Spaces:
Sleeping
Sleeping
| import os | |
| from collections import defaultdict | |
| import matplotlib.colors as mcolors | |
| import matplotlib.pyplot as plt | |
| import numpy as np | |
| import scipy.io.wavfile as wavfile | |
| import torch | |
| import torch.nn.functional as F | |
| import torchvision | |
| from moviepy import * | |
| # from moviepy.editor import VideoFileClip, AudioFileClip | |
| from base64 import b64encode | |
| from DenseAV.denseav.shared import pca | |
| def write_video_with_audio(video_frames, audio_array, video_fps, audio_fps, output_path): | |
| """ | |
| Writes video frames and audio to a specified path. | |
| Parameters: | |
| - video_frames: torch.Tensor of shape (num_frames, height, width, channels) | |
| - audio_array: torch.Tensor of shape (num_samples, num_channels) | |
| - video_fps: int, frames per second of the video | |
| - audio_fps: int, sample rate of the audio | |
| - output_path: str, path to save the final video with audio | |
| """ | |
| os.makedirs(os.path.dirname(output_path), exist_ok=True) | |
| temp_video_path = output_path.replace('.mp4', '_temp.mp4') | |
| temp_audio_path = output_path.replace('.mp4', '_temp_audio.wav') | |
| video_options = { | |
| 'crf': '23', | |
| 'preset': 'slow', | |
| 'bit_rate': '1000k'} | |
| if audio_array is not None: | |
| torchvision.io.write_video( | |
| filename=temp_video_path, | |
| video_array=video_frames, | |
| fps=video_fps, | |
| options=video_options | |
| ) | |
| wavfile.write(temp_audio_path, audio_fps, audio_array.cpu().to(torch.float64).permute(1, 0).numpy()) | |
| video_clip = VideoFileClip(temp_video_path) | |
| audio_clip = AudioFileClip(temp_audio_path) | |
| final_clip = video_clip.with_audio(audio_clip) | |
| final_clip.write_videofile(output_path, codec='libx264') | |
| os.remove(temp_video_path) | |
| os.remove(temp_audio_path) | |
| else: | |
| torchvision.io.write_video( | |
| filename=output_path, | |
| video_array=video_frames, | |
| fps=video_fps, | |
| options=video_options | |
| ) | |
| def alpha_blend_layers(layers): | |
| blended_image = layers[0] | |
| for layer in layers[1:]: | |
| rgb1, alpha1 = blended_image[:, :3, :, :], blended_image[:, 3:4, :, :] | |
| rgb2, alpha2 = layer[:, :3, :, :], layer[:, 3:4, :, :] | |
| alpha_out = alpha2 + alpha1 * (1 - alpha2) | |
| rgb_out = (rgb2 * alpha2 + rgb1 * alpha1 * (1 - alpha2)) / alpha_out.clamp(min=1e-7) | |
| blended_image = torch.cat([rgb_out, alpha_out], dim=1) | |
| return (blended_image[:, :3] * 255).clamp(0, 255).to(torch.uint8).permute(0, 2, 3, 1) | |
| def _prep_sims_for_plotting(sim_by_head, frames): | |
| with torch.no_grad(): | |
| results = defaultdict(list) | |
| n_frames, _, vh, vw = frames.shape | |
| sims = sim_by_head.max(dim=1).values | |
| n_audio_feats = sims.shape[-1] | |
| for frame_num in range(n_frames): | |
| selected_audio_feat = int((frame_num / n_frames) * n_audio_feats) | |
| selected_sim = F.interpolate( | |
| sims[frame_num, :, :, selected_audio_feat].unsqueeze(0).unsqueeze(0), | |
| size=(vh, vw), | |
| mode="bicubic") | |
| results["sims_all"].append(selected_sim) | |
| for head in range(sim_by_head.shape[1]): | |
| selected_sim = F.interpolate( | |
| sim_by_head[frame_num, head, :, :, selected_audio_feat].unsqueeze(0).unsqueeze(0), | |
| size=(vh, vw), | |
| mode="bicubic") | |
| results[f"sims_{head + 1}"].append(selected_sim) | |
| results = {k: torch.cat(v, dim=0) for k, v in results.items()} | |
| return results | |
| def get_plasma_with_alpha(): | |
| plasma = plt.cm.plasma(np.linspace(0, 1, 256)) | |
| alphas = np.linspace(0, 1, 256) | |
| plasma_with_alpha = np.zeros((256, 4)) | |
| plasma_with_alpha[:, 0:3] = plasma[:, 0:3] | |
| plasma_with_alpha[:, 3] = alphas | |
| return mcolors.ListedColormap(plasma_with_alpha) | |
| def get_inferno_with_alpha_2(alpha=0.5, k=30): | |
| k_fraction = k / 100.0 | |
| custom_cmap = np.zeros((256, 4)) | |
| threshold_index = int(k_fraction * 256) | |
| custom_cmap[:threshold_index, :3] = 0 # RGB values for black | |
| custom_cmap[:threshold_index, 3] = alpha # Alpha value | |
| remaining_inferno = plt.cm.inferno(np.linspace(0, 1, 256 - threshold_index)) | |
| custom_cmap[threshold_index:, :3] = remaining_inferno[:, :3] | |
| custom_cmap[threshold_index:, 3] = alpha # Alpha value | |
| return mcolors.ListedColormap(custom_cmap) | |
| def get_inferno_with_alpha(): | |
| plasma = plt.cm.inferno(np.linspace(0, 1, 256)) | |
| alphas = np.linspace(0, 1, 256) | |
| plasma_with_alpha = np.zeros((256, 4)) | |
| plasma_with_alpha[:, 0:3] = plasma[:, 0:3] | |
| plasma_with_alpha[:, 3] = alphas | |
| return mcolors.ListedColormap(plasma_with_alpha) | |
| red_cmap = mcolors.LinearSegmentedColormap('RedMap', segmentdata={ | |
| 'red': [(0.0, 1.0, 1.0), (1.0, 1.0, 1.0)], | |
| 'green': [(0.0, 0.0, 0.0), (1.0, 0.0, 0.0)], | |
| 'blue': [(0.0, 0.0, 0.0), (1.0, 0.0, 0.0)], | |
| 'alpha': [(0.0, 0.0, 0.0), (1.0, 1.0, 1.0)] | |
| }) | |
| blue_cmap = mcolors.LinearSegmentedColormap('BlueMap', segmentdata={ | |
| 'red': [(0.0, 0.0, 0.0), (1.0, 0.0, 0.0)], | |
| 'green': [(0.0, 0.0, 0.0), (1.0, 0.0, 0.0)], | |
| 'blue': [(0.0, 1.0, 1.0), (1.0, 1.0, 1.0)], | |
| 'alpha': [(0.0, 0.0, 0.0), (1.0, 1.0, 1.0)] | |
| }) | |
| def plot_attention_video(sims_by_head, frames, audio, video_fps, audio_fps, output_filename): | |
| prepped_sims = _prep_sims_for_plotting(sims_by_head, frames) | |
| n_frames, _, vh, vw = frames.shape | |
| sims_all = prepped_sims["sims_all"].clamp_min(0) | |
| sims_all -= sims_all.min() | |
| sims_all = sims_all / sims_all.max() | |
| cmap = get_inferno_with_alpha() | |
| layer1 = torch.cat([frames, torch.ones(n_frames, 1, vh, vw)], axis=1) | |
| layer2 = torch.tensor(cmap(sims_all.squeeze().detach().cpu())).permute(0, 3, 1, 2) | |
| write_video_with_audio( | |
| alpha_blend_layers([layer1, layer2]), | |
| audio, | |
| video_fps, | |
| audio_fps, | |
| output_filename) | |
| def plot_2head_attention_video(sims_by_head, frames, audio, video_fps, audio_fps, output_filename): | |
| prepped_sims = _prep_sims_for_plotting(sims_by_head, frames) | |
| sims_1 = prepped_sims["sims_1"] | |
| sims_2 = prepped_sims["sims_2"] | |
| n_frames, _, vh, vw = frames.shape | |
| mask = sims_1 > sims_2 | |
| sims_1 *= mask | |
| sims_2 *= (~mask) | |
| sims_1 = sims_1.clamp_min(0) | |
| sims_1 -= sims_1.min() | |
| sims_1 = sims_1 / sims_1.max() | |
| sims_2 = sims_2.clamp_min(0) | |
| sims_2 -= sims_2.min() | |
| sims_2 = sims_2 / sims_2.max() | |
| layer1 = torch.cat([frames, torch.ones(n_frames, 1, vh, vw)], axis=1) | |
| layer2_head1 = torch.tensor(red_cmap(sims_1.squeeze().detach().cpu())).permute(0, 3, 1, 2) | |
| layer2_head2 = torch.tensor(blue_cmap(sims_2.squeeze().detach().cpu())).permute(0, 3, 1, 2) | |
| write_video_with_audio( | |
| alpha_blend_layers([layer1, layer2_head1, layer2_head2]), | |
| audio, | |
| video_fps, | |
| audio_fps, | |
| output_filename) | |
| def plot_feature_video(image_feats, | |
| audio_feats, | |
| frames, | |
| audio, | |
| video_fps, | |
| audio_fps, | |
| video_filename, | |
| audio_filename): | |
| with torch.no_grad(): | |
| image_feats_ = image_feats.cpu() | |
| audio_feats_ = audio_feats.cpu() | |
| [red_img_feats, red_audio_feats], _ = pca([ | |
| image_feats_, | |
| audio_feats_, # .tile(image_feats_.shape[0], 1, 1, 1) | |
| ]) | |
| _, _, vh, vw = frames.shape | |
| red_img_feats = F.interpolate(red_img_feats, size=(vh, vw), mode="bicubic") | |
| red_audio_feats = red_audio_feats[0].unsqueeze(0) | |
| red_audio_feats = F.interpolate(red_audio_feats, size=(50, red_img_feats.shape[0]), mode="bicubic") | |
| write_video_with_audio( | |
| (red_img_feats.permute(0, 2, 3, 1) * 255).clamp(0, 255).to(torch.uint8), | |
| audio, | |
| video_fps, | |
| audio_fps, | |
| video_filename) | |
| red_audio_feats_expanded = red_audio_feats.tile(red_img_feats.shape[0], 1, 1, 1) | |
| red_audio_feats_expanded = F.interpolate(red_audio_feats_expanded, scale_factor=6, mode="bicubic") | |
| for i in range(red_img_feats.shape[0]): | |
| center_index = i * 6 | |
| min_index = max(center_index - 2, 0) | |
| max_index = min(center_index + 2, red_audio_feats_expanded.shape[-1]) | |
| red_audio_feats_expanded[i, :, :, min_index:max_index] = 1 | |
| write_video_with_audio( | |
| (red_audio_feats_expanded.permute(0, 2, 3, 1) * 255).clamp(0, 255).to(torch.uint8), | |
| audio, | |
| video_fps, | |
| audio_fps, | |
| audio_filename) | |
| def display_video_in_notebook(path): | |
| from IPython.display import HTML, display | |
| mp4 = open(path, 'rb').read() | |
| data_url = "data:video/mp4;base64," + b64encode(mp4).decode() | |
| display(HTML(""" | |
| <video width=400 controls> | |
| <source src="%s" type="video/mp4"> | |
| </video> | |
| """ % data_url)) | |