Spaces:
Build error
Build error
| import streamlit as st | |
| import torch | |
| from PIL import Image | |
| import gc | |
| import tempfile | |
| import os | |
| from transformers import Qwen2VLForConditionalGeneration, AutoProcessor | |
| from qwen_vl_utils import process_vision_info | |
| from byaldi import RAGMultiModalModel | |
| # Function to load Byaldi model | |
| def load_byaldi_model(): | |
| model = RAGMultiModalModel.from_pretrained("vidore/colpali-v1.2", device="cpu") | |
| return model | |
| # Function to load Qwen2-VL model | |
| def load_qwen_model(): | |
| model = Qwen2VLForConditionalGeneration.from_pretrained( | |
| "Qwen/Qwen2-VL-7B-Instruct", torch_dtype=torch.float32, device_map="cpu" | |
| ) | |
| processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct") | |
| return model, processor | |
| # Function to clear GPU memory | |
| def clear_memory(): | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| # Streamlit Interface | |
| st.title("OCR and Visual Language Model Demo") | |
| st.write("Upload an image for OCR extraction and then ask a question about the image.") | |
| # Image uploader | |
| image = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) | |
| if image: | |
| img = Image.open(image) | |
| st.image(img, caption="Uploaded Image", use_column_width=True) | |
| # OCR Extraction with Byaldi | |
| st.write("Extracting text from image...") | |
| byaldi_model = load_byaldi_model() | |
| # Save the image to a temporary file | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_file: | |
| img.save(temp_file, format="JPEG") | |
| temp_file_path = temp_file.name | |
| # Create a temporary index for the uploaded image | |
| with st.spinner("Processing image..."): | |
| byaldi_model.index(temp_file_path, index_name="temp_index", overwrite=True) | |
| # Perform a dummy search to get the OCR results | |
| ocr_results = byaldi_model.search("Extract all text from the image", k=1) | |
| # Extract the OCR text from the results | |
| if ocr_results: | |
| extracted_text = ocr_results[0].metadata.get("ocr_text", "No text extracted") | |
| else: | |
| extracted_text = "No text extracted" | |
| st.write("Extracted Text:") | |
| st.write(extracted_text) | |
| # Clear Byaldi model from memory | |
| del byaldi_model | |
| clear_memory() | |
| # Remove the temporary file | |
| os.unlink(temp_file_path) | |
| # Text input field for question | |
| question = st.text_input("Ask a question about the image and extracted text") | |
| if question: | |
| st.write("Processing with Qwen2-VL...") | |
| qwen_model, qwen_processor = load_qwen_model() | |
| # Prepare inputs for Qwen2-VL | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| {"type": "image", "image": img}, | |
| {"type": "text", "text": f"Extracted text: {extracted_text}\n\nQuestion: {question}"}, | |
| ], | |
| } | |
| ] | |
| # Prepare for inference | |
| text_input = qwen_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| image_inputs, _ = process_vision_info(messages) | |
| inputs = qwen_processor(text=[text_input], images=image_inputs, padding=True, return_tensors="pt") | |
| # Move tensors to CPU | |
| inputs = inputs.to("cpu") | |
| # Run the model and generate output | |
| with torch.no_grad(): | |
| generated_ids = qwen_model.generate(**inputs, max_new_tokens=128) | |
| # Decode the output text | |
| generated_text = qwen_processor.batch_decode(generated_ids, skip_special_tokens=True) | |
| # Display the response | |
| st.write("Model's response:", generated_text) | |
| # Clear Qwen model from memory | |
| del qwen_model, qwen_processor | |
| clear_memory() |