lyangas's picture
move model downloading to dockerfile
f2adbf5
from fastapi import FastAPI, HTTPException, UploadFile, File, Form
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing import Optional, Dict, Any
import json
import base64
from PIL import Image
from io import BytesIO
import uvicorn
from app import llm_client
# Create FastAPI application
api_app = FastAPI(
title="LLM Structured Output API",
description="API for generating structured responses from local GGUF models via llama-cpp-python",
version="1.0.0"
)
# Setup CORS
api_app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Data models for API
class StructuredOutputRequest(BaseModel):
prompt: str
json_schema: Dict[str, Any]
image_base64: Optional[str] = None
use_grammar: bool = True
class StructuredOutputResponse(BaseModel):
success: bool
data: Optional[Dict[str, Any]] = None
error: Optional[str] = None
raw_response: Optional[str] = None
def decode_base64_image(base64_string: str) -> Image.Image:
"""Decode base64 string to PIL Image"""
try:
image_data = base64.b64decode(base64_string)
image = Image.open(BytesIO(image_data))
return image
except Exception as e:
raise HTTPException(status_code=400, detail=f"Image decoding error: {str(e)}")
@api_app.post("/generate", response_model=StructuredOutputResponse)
async def generate_structured_output(request: StructuredOutputRequest):
"""
Main endpoint for generating structured response
Args:
request: Request containing prompt, JSON schema and optionally base64 image
Returns:
StructuredOutputResponse: Structured response or error
"""
# Check model initialization
if llm_client is None:
raise HTTPException(
status_code=503,
detail="LLM model not initialized. Check server configuration."
)
try:
# Validate input data
if not request.prompt.strip():
raise HTTPException(status_code=400, detail="Prompt cannot be empty")
if not request.json_schema:
raise HTTPException(status_code=400, detail="JSON schema cannot be empty")
# Decode image if provided
image = None
if request.image_base64:
image = decode_base64_image(request.image_base64)
# Generate response
result = llm_client.generate_structured_response(
prompt=request.prompt,
json_schema=request.json_schema,
image=image,
use_grammar=request.use_grammar
)
# Format response
if "error" in result:
return StructuredOutputResponse(
success=False,
error=result["error"],
raw_response=result.get("raw_response")
)
else:
return StructuredOutputResponse(
success=True,
data=result.get("data"),
raw_response=result.get("raw_response")
)
except HTTPException:
raise
except Exception as e:
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
@api_app.post("/generate_with_file", response_model=StructuredOutputResponse)
async def generate_with_file(
prompt: str = Form(...),
json_schema: str = Form(...),
image: Optional[UploadFile] = File(None),
use_grammar: bool = Form(True)
):
"""
Alternative endpoint for uploading image as file
Args:
prompt: Text prompt
json_schema: JSON schema as string
image: Uploaded image file
use_grammar: Whether to use grammar-based structured output
Returns:
StructuredOutputResponse: Structured response or error
"""
# Check model initialization
if llm_client is None:
raise HTTPException(
status_code=503,
detail="LLM model not initialized. Check server configuration."
)
try:
# Validate input data
if not prompt.strip():
raise HTTPException(status_code=400, detail="Prompt cannot be empty")
if not json_schema.strip():
raise HTTPException(status_code=400, detail="JSON schema cannot be empty")
# Parse JSON schema
try:
parsed_schema = json.loads(json_schema)
except json.JSONDecodeError as e:
raise HTTPException(status_code=400, detail=f"Invalid JSON schema: {str(e)}")
# Process image if provided
pil_image = None
if image:
# Check file type
if not image.content_type.startswith('image/'):
raise HTTPException(status_code=400, detail="Uploaded file must be an image")
# Read and convert image
image_data = await image.read()
pil_image = Image.open(BytesIO(image_data))
# Generate response
result = llm_client.generate_structured_response(
prompt=prompt,
json_schema=parsed_schema,
image=pil_image,
use_grammar=use_grammar
)
# Format response
if "error" in result:
return StructuredOutputResponse(
success=False,
error=result["error"],
raw_response=result.get("raw_response")
)
else:
return StructuredOutputResponse(
success=True,
data=result.get("data"),
raw_response=result.get("raw_response")
)
except HTTPException:
raise
except Exception as e:
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
@api_app.get("/health")
async def health_check():
"""API health check"""
model_status = "loaded" if llm_client is not None else "not_loaded"
return {
"status": "healthy" if llm_client is not None else "degraded",
"model_status": model_status,
"message": "API is working correctly" if llm_client is not None else "API is working, but model is not loaded"
}
@api_app.get("/")
async def root():
"""Root endpoint with API information"""
return {
"message": "LLM Structured Output API",
"version": "1.0.0",
"model_loaded": llm_client is not None,
"endpoints": {
"/generate": "POST - main endpoint for generating structured response",
"/generate_with_file": "POST - endpoint with image file upload",
"/health": "GET - health check",
"/docs": "GET - automatic Swagger documentation"
}
}
if __name__ == "__main__":
from config import Config
uvicorn.run(
"api:api_app",
host=Config.HOST,
port=Config.API_PORT,
reload=True
)