Spaces:
Runtime error
Runtime error
| """ | |
| Copyright (c) Meta Platforms, Inc. and affiliates. | |
| All rights reserved. | |
| This source code is licensed under the license found in the | |
| LICENSE file in the root directory of this source tree. | |
| """ | |
| import json | |
| import os | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from einops import rearrange, repeat | |
| from utils.misc import broadcast_tensors | |
| def setup_tokenizer(resume_pth: str) -> "TemporalVertexCodec": | |
| args_path = os.path.dirname(resume_pth) | |
| with open(os.path.join(args_path, "args.json")) as f: | |
| trans_args = json.load(f) | |
| tokenizer = TemporalVertexCodec( | |
| n_vertices=trans_args["nb_joints"], | |
| latent_dim=trans_args["output_emb_width"], | |
| categories=trans_args["code_dim"], | |
| residual_depth=trans_args["depth"], | |
| ) | |
| print("loading checkpoint from {}".format(resume_pth)) | |
| ckpt = torch.load(resume_pth, map_location="cpu") | |
| tokenizer.load_state_dict(ckpt["net"], strict=True) | |
| for p in tokenizer.parameters(): | |
| p.requires_grad = False | |
| tokenizer.cuda() | |
| return tokenizer | |
| def default(val, d): | |
| return val if val is not None else d | |
| def ema_inplace(moving_avg, new, decay: float): | |
| moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay)) | |
| def laplace_smoothing(x, n_categories: int, epsilon: float = 1e-5): | |
| return (x + epsilon) / (x.sum() + n_categories * epsilon) | |
| def uniform_init(*shape: int): | |
| t = torch.empty(shape) | |
| nn.init.kaiming_uniform_(t) | |
| return t | |
| def sum_flat(tensor): | |
| """ | |
| Take the sum over all non-batch dimensions. | |
| """ | |
| return tensor.sum(dim=list(range(1, len(tensor.shape)))) | |
| def sample_vectors(samples, num: int): | |
| num_samples, device = samples.shape[0], samples.device | |
| if num_samples >= num: | |
| indices = torch.randperm(num_samples, device=device)[:num] | |
| else: | |
| indices = torch.randint(0, num_samples, (num,), device=device) | |
| return samples[indices] | |
| def kmeans(samples, num_clusters: int, num_iters: int = 10): | |
| dim, dtype = samples.shape[-1], samples.dtype | |
| means = sample_vectors(samples, num_clusters) | |
| for _ in range(num_iters): | |
| diffs = rearrange(samples, "n d -> n () d") - rearrange(means, "c d -> () c d") | |
| dists = -(diffs**2).sum(dim=-1) | |
| buckets = dists.max(dim=-1).indices | |
| bins = torch.bincount(buckets, minlength=num_clusters) | |
| zero_mask = bins == 0 | |
| bins_min_clamped = bins.masked_fill(zero_mask, 1) | |
| new_means = buckets.new_zeros(num_clusters, dim, dtype=dtype) | |
| new_means.scatter_add_(0, repeat(buckets, "n -> n d", d=dim), samples) | |
| new_means = new_means / bins_min_clamped[..., None] | |
| means = torch.where(zero_mask[..., None], means, new_means) | |
| return means, bins | |
| class EuclideanCodebook(nn.Module): | |
| """Codebook with Euclidean distance. | |
| Args: | |
| dim (int): Dimension. | |
| codebook_size (int): Codebook size. | |
| kmeans_init (bool): Whether to use k-means to initialize the codebooks. | |
| If set to true, run the k-means algorithm on the first training batch and use | |
| the learned centroids as initialization. | |
| kmeans_iters (int): Number of iterations used for k-means algorithm at initialization. | |
| decay (float): Decay for exponential moving average over the codebooks. | |
| epsilon (float): Epsilon value for numerical stability. | |
| threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes | |
| that have an exponential moving average cluster size less than the specified threshold with | |
| randomly selected vector from the current batch. | |
| """ | |
| def __init__( | |
| self, | |
| dim: int, | |
| codebook_size: int, | |
| kmeans_init: int = False, | |
| kmeans_iters: int = 10, | |
| decay: float = 0.99, | |
| epsilon: float = 1e-5, | |
| threshold_ema_dead_code: int = 2, | |
| ): | |
| super().__init__() | |
| self.decay = decay | |
| init_fn = uniform_init if not kmeans_init else torch.zeros | |
| embed = init_fn(codebook_size, dim) | |
| self.codebook_size = codebook_size | |
| self.kmeans_iters = kmeans_iters | |
| self.epsilon = epsilon | |
| self.threshold_ema_dead_code = threshold_ema_dead_code | |
| self.register_buffer("inited", torch.Tensor([not kmeans_init])) | |
| self.register_buffer("cluster_size", torch.zeros(codebook_size)) | |
| self.register_buffer("embed", embed) | |
| self.register_buffer("embed_avg", embed.clone()) | |
| def init_embed_(self, data): | |
| if self.inited: | |
| return | |
| embed, cluster_size = kmeans(data, self.codebook_size, self.kmeans_iters) | |
| self.embed.data.copy_(embed) | |
| self.embed_avg.data.copy_(embed.clone()) | |
| self.cluster_size.data.copy_(cluster_size) | |
| self.inited.data.copy_(torch.Tensor([True])) | |
| # Make sure all buffers across workers are in sync after initialization | |
| broadcast_tensors(self.buffers()) | |
| def replace_(self, samples, mask): | |
| modified_codebook = torch.where( | |
| mask[..., None], sample_vectors(samples, self.codebook_size), self.embed | |
| ) | |
| self.embed.data.copy_(modified_codebook) | |
| def expire_codes_(self, batch_samples): | |
| if self.threshold_ema_dead_code == 0: | |
| return | |
| expired_codes = self.cluster_size < self.threshold_ema_dead_code | |
| if not torch.any(expired_codes): | |
| return | |
| batch_samples = rearrange(batch_samples, "... d -> (...) d") | |
| self.replace_(batch_samples, mask=expired_codes) | |
| broadcast_tensors(self.buffers()) | |
| def preprocess(self, x): | |
| x = rearrange(x, "... d -> (...) d") | |
| return x | |
| def quantize(self, x): | |
| embed = self.embed.t() | |
| dist = -( | |
| x.pow(2).sum(1, keepdim=True) | |
| - 2 * x @ embed | |
| + embed.pow(2).sum(0, keepdim=True) | |
| ) | |
| embed_ind = dist.max(dim=-1).indices | |
| return embed_ind | |
| def postprocess_emb(self, embed_ind, shape): | |
| return embed_ind.view(*shape[:-1]) | |
| def dequantize(self, embed_ind): | |
| quantize = F.embedding(embed_ind, self.embed) | |
| return quantize | |
| def encode(self, x): | |
| shape = x.shape | |
| x = self.preprocess(x) | |
| embed_ind = self.quantize(x) | |
| embed_ind = self.postprocess_emb(embed_ind, shape) | |
| return embed_ind | |
| def decode(self, embed_ind): | |
| quantize = self.dequantize(embed_ind) | |
| return quantize | |
| def forward(self, x): | |
| shape, dtype = x.shape, x.dtype | |
| x = self.preprocess(x) | |
| self.init_embed_(x) | |
| embed_ind = self.quantize(x) | |
| embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(dtype) | |
| embed_ind = self.postprocess_emb(embed_ind, shape) | |
| quantize = self.dequantize(embed_ind) | |
| if self.training: | |
| # We do the expiry of code at that point as buffers are in sync | |
| # and all the workers will take the same decision. | |
| self.expire_codes_(x) | |
| ema_inplace(self.cluster_size, embed_onehot.sum(0), self.decay) | |
| embed_sum = x.t() @ embed_onehot | |
| ema_inplace(self.embed_avg, embed_sum.t(), self.decay) | |
| cluster_size = ( | |
| laplace_smoothing(self.cluster_size, self.codebook_size, self.epsilon) | |
| * self.cluster_size.sum() | |
| ) | |
| embed_normalized = self.embed_avg / cluster_size.unsqueeze(1) | |
| self.embed.data.copy_(embed_normalized) | |
| return quantize, embed_ind | |
| class VectorQuantization(nn.Module): | |
| """Vector quantization implementation. | |
| Currently supports only euclidean distance. | |
| Args: | |
| dim (int): Dimension | |
| codebook_size (int): Codebook size | |
| codebook_dim (int): Codebook dimension. If not defined, uses the specified dimension in dim. | |
| decay (float): Decay for exponential moving average over the codebooks. | |
| epsilon (float): Epsilon value for numerical stability. | |
| kmeans_init (bool): Whether to use kmeans to initialize the codebooks. | |
| kmeans_iters (int): Number of iterations used for kmeans initialization. | |
| threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes | |
| that have an exponential moving average cluster size less than the specified threshold with | |
| randomly selected vector from the current batch. | |
| commitment_weight (float): Weight for commitment loss. | |
| """ | |
| def __init__( | |
| self, | |
| dim: int, | |
| codebook_size: int, | |
| codebook_dim=None, | |
| decay: float = 0.99, | |
| epsilon: float = 1e-5, | |
| kmeans_init: bool = True, | |
| kmeans_iters: int = 50, | |
| threshold_ema_dead_code: int = 2, | |
| commitment_weight: float = 1.0, | |
| ): | |
| super().__init__() | |
| _codebook_dim: int = default(codebook_dim, dim) | |
| requires_projection = _codebook_dim != dim | |
| self.project_in = ( | |
| nn.Linear(dim, _codebook_dim) if requires_projection else nn.Identity() | |
| ) | |
| self.project_out = ( | |
| nn.Linear(_codebook_dim, dim) if requires_projection else nn.Identity() | |
| ) | |
| self.epsilon = epsilon | |
| self.commitment_weight = commitment_weight | |
| self._codebook = EuclideanCodebook( | |
| dim=_codebook_dim, | |
| codebook_size=codebook_size, | |
| kmeans_init=kmeans_init, | |
| kmeans_iters=kmeans_iters, | |
| decay=decay, | |
| epsilon=epsilon, | |
| threshold_ema_dead_code=threshold_ema_dead_code, | |
| ) | |
| self.codebook_size = codebook_size | |
| self.l2_loss = lambda a, b: (a - b) ** 2 | |
| def codebook(self): | |
| return self._codebook.embed | |
| def encode(self, x: torch.Tensor) -> torch.Tensor: | |
| x = self.project_in(x) | |
| embed_in = self._codebook.encode(x) | |
| return embed_in | |
| def decode(self, embed_ind: torch.Tensor) -> torch.Tensor: | |
| quantize = self._codebook.decode(embed_ind) | |
| quantize = self.project_out(quantize) | |
| return quantize | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| """ | |
| :param x: B x dim input tensor | |
| :return: quantize: B x dim tensor containing reconstruction after quantization | |
| embed_ind: B-dimensional tensor containing embedding indices | |
| loss: scalar tensor containing commitment loss | |
| """ | |
| device = x.device | |
| x = self.project_in(x) | |
| quantize, embed_ind = self._codebook(x) | |
| if self.training: | |
| quantize = x + (quantize - x).detach() | |
| loss = torch.tensor([0.0], device=device, requires_grad=self.training) | |
| if self.training: | |
| if self.commitment_weight > 0: | |
| commit_loss = F.mse_loss(quantize.detach(), x) | |
| loss = loss + commit_loss * self.commitment_weight | |
| quantize = self.project_out(quantize) | |
| return quantize, embed_ind, loss | |
| class ResidualVectorQuantization(nn.Module): | |
| """Residual vector quantization implementation. | |
| Follows Algorithm 1. in https://arxiv.org/pdf/2107.03312.pdf | |
| """ | |
| def __init__(self, *, num_quantizers: int, **kwargs): | |
| super().__init__() | |
| self.layers = nn.ModuleList( | |
| [VectorQuantization(**kwargs) for _ in range(num_quantizers)] | |
| ) | |
| def forward(self, x, B, T, mask, n_q=None): | |
| """ | |
| :param x: B x dim tensor | |
| :return: quantized_out: B x dim tensor | |
| out_indices: B x n_q LongTensor containing indices for each quantizer | |
| out_losses: scalar tensor containing commitment loss | |
| """ | |
| quantized_out = 0.0 | |
| residual = x | |
| all_losses = [] | |
| all_indices = [] | |
| n_q = n_q or len(self.layers) | |
| for layer in self.layers[:n_q]: | |
| quantized, indices, loss = layer(residual) | |
| residual = ( | |
| residual - quantized | |
| ) # would need quantizer.detach() to have commitment gradients beyond the first quantizer, but this seems to harm performance | |
| quantized_out = quantized_out + quantized | |
| all_indices.append(indices) | |
| all_losses.append(loss) | |
| out_indices = torch.stack(all_indices, dim=-1) | |
| out_losses = torch.mean(torch.stack(all_losses)) | |
| return quantized_out, out_indices, out_losses | |
| def encode(self, x: torch.Tensor, n_q=None) -> torch.Tensor: | |
| """ | |
| :param x: B x dim input tensor | |
| :return: B x n_q LongTensor containing indices for each quantizer | |
| """ | |
| residual = x | |
| all_indices = [] | |
| n_q = n_q or len(self.layers) | |
| for layer in self.layers[:n_q]: | |
| indices = layer.encode(residual) # indices = 16 x 8 = B x T | |
| # print(indices.shape, residual.shape, x.shape) | |
| quantized = layer.decode(indices) | |
| residual = residual - quantized | |
| all_indices.append(indices) | |
| out_indices = torch.stack(all_indices, dim=-1) | |
| return out_indices | |
| def decode(self, q_indices: torch.Tensor) -> torch.Tensor: | |
| """ | |
| :param q_indices: B x n_q LongTensor containing indices for each quantizer | |
| :return: B x dim tensor containing reconstruction after quantization | |
| """ | |
| quantized_out = torch.tensor(0.0, device=q_indices.device) | |
| q_indices = q_indices.permute(1, 0).contiguous() | |
| for i, indices in enumerate(q_indices): | |
| layer = self.layers[i] | |
| quantized = layer.decode(indices) | |
| quantized_out = quantized_out + quantized | |
| return quantized_out | |
| class TemporalVertexEncoder(nn.Module): | |
| def __init__( | |
| self, | |
| n_vertices: int = 338, | |
| latent_dim: int = 128, | |
| ): | |
| super().__init__() | |
| self.input_dim = n_vertices | |
| self.enc = nn.Sequential( | |
| nn.Conv1d(self.input_dim, latent_dim, kernel_size=1), | |
| nn.LeakyReLU(negative_slope=0.2, inplace=True), | |
| nn.Conv1d(latent_dim, latent_dim, kernel_size=2, dilation=1), | |
| nn.LeakyReLU(negative_slope=0.2, inplace=True), | |
| nn.Conv1d(latent_dim, latent_dim, kernel_size=2, dilation=2), | |
| nn.LeakyReLU(negative_slope=0.2, inplace=True), | |
| nn.Conv1d(latent_dim, latent_dim, kernel_size=2, dilation=3), | |
| nn.LeakyReLU(negative_slope=0.2, inplace=True), | |
| nn.Conv1d(latent_dim, latent_dim, kernel_size=2, dilation=1), | |
| ) | |
| self.receptive_field = 8 | |
| def forward(self, verts): | |
| """ | |
| :param verts: B x T x n_vertices x 3 tensor containing batched sequences of vertices | |
| :return: B x T x latent_dim tensor containing the latent representation | |
| """ | |
| if verts.dim() == 4: | |
| verts = verts.permute(0, 2, 3, 1).contiguous() | |
| verts = verts.view(verts.shape[0], self.input_dim, verts.shape[3]) | |
| else: | |
| verts = verts.permute(0, 2, 1) | |
| verts = nn.functional.pad(verts, pad=[self.receptive_field - 1, 0]) | |
| x = self.enc(verts) | |
| x = x.permute(0, 2, 1).contiguous() | |
| return x | |
| class TemporalVertexDecoder(nn.Module): | |
| def __init__( | |
| self, | |
| n_vertices: int = 338, | |
| latent_dim: int = 128, | |
| ): | |
| super().__init__() | |
| self.output_dim = n_vertices | |
| self.project_mean_shape = nn.Linear(self.output_dim, latent_dim) | |
| self.dec = nn.Sequential( | |
| nn.Conv1d(latent_dim, latent_dim, kernel_size=2, dilation=1), | |
| nn.LeakyReLU(negative_slope=0.2, inplace=True), | |
| nn.Conv1d(latent_dim, latent_dim, kernel_size=2, dilation=2), | |
| nn.LeakyReLU(negative_slope=0.2, inplace=True), | |
| nn.Conv1d(latent_dim, latent_dim, kernel_size=2, dilation=3), | |
| nn.LeakyReLU(negative_slope=0.2, inplace=True), | |
| nn.Conv1d(latent_dim, latent_dim, kernel_size=2, dilation=1), | |
| nn.LeakyReLU(negative_slope=0.2, inplace=True), | |
| nn.Conv1d(latent_dim, self.output_dim, kernel_size=1), | |
| ) | |
| self.receptive_field = 8 | |
| def forward(self, x): | |
| """ | |
| :param x: B x T x latent_dim tensor containing batched sequences of vertex encodings | |
| :return: B x T x n_vertices x 3 tensor containing batched sequences of vertices | |
| """ | |
| x = x.permute(0, 2, 1).contiguous() | |
| x = nn.functional.pad(x, pad=[self.receptive_field - 1, 0]) | |
| verts = self.dec(x) | |
| verts = verts.permute(0, 2, 1) | |
| return verts | |
| class TemporalVertexCodec(nn.Module): | |
| def __init__( | |
| self, | |
| n_vertices: int = 338, | |
| latent_dim: int = 128, | |
| categories: int = 128, | |
| residual_depth: int = 4, | |
| ): | |
| super().__init__() | |
| self.latent_dim = latent_dim | |
| self.categories = categories | |
| self.residual_depth = residual_depth | |
| self.n_clusters = categories | |
| self.encoder = TemporalVertexEncoder( | |
| n_vertices=n_vertices, latent_dim=latent_dim | |
| ) | |
| self.decoder = TemporalVertexDecoder( | |
| n_vertices=n_vertices, latent_dim=latent_dim | |
| ) | |
| self.quantizer = ResidualVectorQuantization( | |
| dim=latent_dim, | |
| codebook_size=categories, | |
| num_quantizers=residual_depth, | |
| decay=0.99, | |
| kmeans_init=True, | |
| kmeans_iters=10, | |
| threshold_ema_dead_code=2, | |
| ) | |
| def predict(self, verts): | |
| """wrapper to provide compatibility with kmeans""" | |
| return self.encode(verts) | |
| def encode(self, verts): | |
| """ | |
| :param verts: B x T x n_vertices x 3 tensor containing batched sequences of vertices | |
| :return: B x T x categories x residual_depth LongTensor containing quantized encodings | |
| """ | |
| enc = self.encoder(verts) | |
| q = self.quantizer.encode(enc) | |
| return q | |
| def decode(self, q): | |
| """ | |
| :param q: B x T x categories x residual_depth LongTensor containing quantized encodings | |
| :return: B x T x n_vertices x 3 tensor containing decoded vertices | |
| """ | |
| reformat = q.dim() > 2 | |
| if reformat: | |
| B, T, _ = q.shape | |
| q = q.reshape((-1, self.residual_depth)) | |
| enc = self.quantizer.decode(q) | |
| if reformat: | |
| enc = enc.reshape((B, T, -1)) | |
| verts = self.decoder(enc) | |
| return verts | |
| def compute_perplexity(self, code_idx): | |
| # Calculate new centres | |
| code_onehot = torch.zeros( | |
| self.categories, code_idx.shape[0], device=code_idx.device | |
| ) # categories, N * L | |
| code_onehot.scatter_(0, code_idx.view(1, code_idx.shape[0]), 1) | |
| code_count = code_onehot.sum(dim=-1) # categories | |
| prob = code_count / torch.sum(code_count) | |
| perplexity = torch.exp(-torch.sum(prob * torch.log(prob + 1e-7))) | |
| return perplexity | |
| def forward(self, verts, mask=None): | |
| """ | |
| :param verts: B x T x n_vertices x 3 tensor containing mesh sequences | |
| :return: verts: B x T x n_vertices x 3 tensor containing reconstructed mesh sequences | |
| vq_loss: scalar tensor for vq commitment loss | |
| """ | |
| B, T = verts.shape[0], verts.shape[1] | |
| x = self.encoder(verts) | |
| x, code_idx, vq_loss = self.quantizer( | |
| x.view(B * T, self.latent_dim), B, T, mask | |
| ) | |
| perplexity = self.compute_perplexity(code_idx[:, -1].view((-1))) | |
| verts = self.decoder(x.view(B, T, self.latent_dim)) | |
| verts = verts.reshape((verts.shape[0], verts.shape[1], -1)) | |
| return verts, vq_loss, perplexity | |