Spaces:
Running
Running
update
Browse files- app.py +14 -3
- constants.py +15 -11
- file/result.csv +6 -13
- file/result.csv.bak +0 -5
- src/compute.py +50 -88
app.py
CHANGED
|
@@ -86,7 +86,18 @@ def add_new_eval(
|
|
| 86 |
input_data[14],
|
| 87 |
input_data[15],
|
| 88 |
input_data[16],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
]
|
|
|
|
|
|
|
|
|
|
| 90 |
csv_data.loc[col] = new_data
|
| 91 |
# with open(f'./file/{model_name}.json','w' ,encoding='utf-8') as f:
|
| 92 |
# json.dump(new_data, f)
|
|
@@ -122,7 +133,7 @@ with block:
|
|
| 122 |
|
| 123 |
# selection for column part:
|
| 124 |
checkbox_group = gr.CheckboxGroup(
|
| 125 |
-
choices=
|
| 126 |
value=AVG_INFO,
|
| 127 |
label="Select options",
|
| 128 |
interactive=True,
|
|
@@ -140,7 +151,7 @@ with block:
|
|
| 140 |
|
| 141 |
def on_checkbox_group_change(selected_columns):
|
| 142 |
# pdb.set_trace()
|
| 143 |
-
selected_columns = [item for item in
|
| 144 |
present_columns = MODEL_INFO + selected_columns
|
| 145 |
updated_data = get_all_df()[present_columns]
|
| 146 |
updated_data = updated_data.sort_values(by=present_columns[1], ascending=False)
|
|
@@ -157,7 +168,7 @@ with block:
|
|
| 157 |
)
|
| 158 |
# pdb.set_trace()
|
| 159 |
|
| 160 |
-
return filter_component.value
|
| 161 |
|
| 162 |
# 将复选框组关联到处理函数
|
| 163 |
checkbox_group.change(fn=on_checkbox_group_change, inputs=checkbox_group, outputs=data_component)
|
|
|
|
| 86 |
input_data[14],
|
| 87 |
input_data[15],
|
| 88 |
input_data[16],
|
| 89 |
+
input_data[17],
|
| 90 |
+
input_data[18],
|
| 91 |
+
input_data[19],
|
| 92 |
+
input_data[20],
|
| 93 |
+
input_data[21],
|
| 94 |
+
input_data[22],
|
| 95 |
+
input_data[23],
|
| 96 |
+
input_data[24],
|
| 97 |
]
|
| 98 |
+
print(len(new_data), col)
|
| 99 |
+
print(csv_data.loc[col-1])
|
| 100 |
+
print(model_name, model_type, model_size)
|
| 101 |
csv_data.loc[col] = new_data
|
| 102 |
# with open(f'./file/{model_name}.json','w' ,encoding='utf-8') as f:
|
| 103 |
# json.dump(new_data, f)
|
|
|
|
| 133 |
|
| 134 |
# selection for column part:
|
| 135 |
checkbox_group = gr.CheckboxGroup(
|
| 136 |
+
choices=TASK_INFO,
|
| 137 |
value=AVG_INFO,
|
| 138 |
label="Select options",
|
| 139 |
interactive=True,
|
|
|
|
| 151 |
|
| 152 |
def on_checkbox_group_change(selected_columns):
|
| 153 |
# pdb.set_trace()
|
| 154 |
+
selected_columns = [item for item in TASK_INFO if item in selected_columns]
|
| 155 |
present_columns = MODEL_INFO + selected_columns
|
| 156 |
updated_data = get_all_df()[present_columns]
|
| 157 |
updated_data = updated_data.sort_values(by=present_columns[1], ascending=False)
|
|
|
|
| 168 |
)
|
| 169 |
# pdb.set_trace()
|
| 170 |
|
| 171 |
+
return filter_component.constructor_args['value']
|
| 172 |
|
| 173 |
# 将复选框组关联到处理函数
|
| 174 |
checkbox_group.change(fn=on_checkbox_group_change, inputs=checkbox_group, outputs=data_component)
|
constants.py
CHANGED
|
@@ -1,21 +1,25 @@
|
|
| 1 |
# this is .py for store constants
|
| 2 |
-
MODEL_INFO = ["Model"]
|
| 3 |
|
| 4 |
-
|
| 5 |
-
"
|
| 6 |
-
"
|
| 7 |
-
"
|
|
|
|
|
|
|
| 8 |
|
| 9 |
-
AVG_INFO = ["Avg. All", "Avg.
|
| 10 |
DATA_TITILE_TYPE = ["markdown",
|
| 11 |
-
"number", "number", "number", "number", "number",
|
| 12 |
-
"number", "number", "number",
|
| 13 |
-
"number", "number", "number",
|
| 14 |
-
"number", "number", "number", "number",
|
|
|
|
|
|
|
| 15 |
CSV_DIR = "./file/result.csv"
|
| 16 |
|
| 17 |
# COLUMN_NAMES = MODEL_INFO + TASK_INFO
|
| 18 |
-
COLUMN_NAMES = MODEL_INFO +
|
| 19 |
|
| 20 |
LEADERBORAD_INTRODUCTION = """
|
| 21 |
Welcome to the leaderboard of TempCompass! 🏆
|
|
|
|
| 1 |
# this is .py for store constants
|
| 2 |
+
MODEL_INFO = ["Model", "Model Type", "Model Size"]
|
| 3 |
|
| 4 |
+
TASK_INFO = ["Avg. All", "Avg. Multi-Choice", "Avg. Yes/No", "Avg. Caption Matching", "Avg. Caption Generation",
|
| 5 |
+
"Action. Multi-Choice", "Action. Yes/No", "Action. Caption Matching", "Action. Caption Generation",
|
| 6 |
+
"Direction. Multi-Choice", "Direction. Yes/No", "Direction. Caption Matching", "Direction. Caption Generation",
|
| 7 |
+
"Speed. Multi-Choice", "Speed. Yes/No", "Speed. Caption Matching", "Speed. Caption Generation",
|
| 8 |
+
"Event Order. Multi-Choice", "Event Order. Yes/No", "Event Order. Caption Matching", "Event Order. Caption Generation",
|
| 9 |
+
"Attribute Change. Multi-Choice", "Attribute Change. Yes/No", "Attribute Change. Caption Matching", "Attribute Change. Caption Generation"]
|
| 10 |
|
| 11 |
+
AVG_INFO = ["Avg. All", "Avg. Multi-Choice", "Avg. Yes/No", "Avg. Caption Matching", "Avg. Caption Generation"]
|
| 12 |
DATA_TITILE_TYPE = ["markdown",
|
| 13 |
+
"number", "number", "number", "number", "number",
|
| 14 |
+
"number", "number", "number", "number",
|
| 15 |
+
"number", "number", "number", "number",
|
| 16 |
+
"number", "number", "number", "number",
|
| 17 |
+
"number", "number", "number", "number",
|
| 18 |
+
"number", "number", "number", "number",]
|
| 19 |
CSV_DIR = "./file/result.csv"
|
| 20 |
|
| 21 |
# COLUMN_NAMES = MODEL_INFO + TASK_INFO
|
| 22 |
+
COLUMN_NAMES = MODEL_INFO + TASK_INFO
|
| 23 |
|
| 24 |
LEADERBORAD_INTRODUCTION = """
|
| 25 |
Welcome to the leaderboard of TempCompass! 🏆
|
file/result.csv
CHANGED
|
@@ -1,13 +1,6 @@
|
|
| 1 |
-
Model,Avg. All,Avg.
|
| 2 |
-
Random,
|
| 3 |
-
[VideoChat-7B](https://github.com/OpenGVLab/Ask-Anything),35.
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
[
|
| 7 |
-
[Valley-7B](https://github.com/RupertLuo/Valley),33.95521521,28.38772829,29.20933333,44.268584,0.381,0.32032,0.2802802,0.3141,0.2905,0.203448,0.111108278,0.237,0.32587,0.31341,0.41666,0.5653846,0.333
|
| 8 |
-
[mPLUG-owl-7B](https://github.com/X-PLUG/mPLUG-Owl),33.14659856,33.16526701,26.39762867,39.8769,0.41470735,0.4245,0.363,0.31656,0.2705,0.2275862,0.277777611,0.2395,0.3017,0.25072886,0.333333,0.510256,0.32
|
| 9 |
-
[Video-LLaMA-7B](https://github.com/DAMO-NLP-SG/Video-LLaMA),32.83174044,32.48401966,27.79906667,38.212135,0.3985,0.4115,0.3405,0.312766,0.289,0.275862,0.166666556,0.2475,0.324082,0.26239,0.30555555,0.4910256,0.3115
|
| 10 |
-
[Chat-UniVi-7B](https://github.com/PKU-YuanGroup/Chat-UniVi),35.31147004,37.87,27.43,40.64,0.49,0.486,0.4165,0.413,0.29,0.2827,0.166666649,0.2305,0.3357,0.2566,0.3889,0.5308,0.2907
|
| 11 |
-
sphinx-v2,45.53190476,44.22571429,41.81666667,50.55333333,0.5307,0.6845,0.5395,0.5341,0.42,0.2759,0.1111,0.3645,0.4396,0.4504,0.4722,0.5564,0.488
|
| 12 |
-
Gemini,49.598478632478624,50.63076923076923,47.93666666666667,50.228,0.585,0.6179,0.4742,0.5305,0.4769,0.5477,0.1176,0.4656,0.5318,0.4407,0.5285,0.4129
|
| 13 |
-
llava_phi_2.7,43.41644444444445,42.97,37.54333333333334,49.736,0.5785,0.608,0.514,0.4542,0.4345,0.1483,0.1111,0.392,0.4763,0.258,0.5538,0.4535
|
|
|
|
| 1 |
+
Model,Model Type,Model Size,Avg. All,Avg. Multi-Choice,Avg. Yes/No,Avg. Caption Matching,Avg. Caption Generation,Action. Multi-Choice,Action. Yes/No,Action. Caption Matching,Action. Caption Generation,Direction. Multi-Choice,Direction. Yes/No,Direction. Caption Matching,Direction. Caption Generation,Speed. Multi-Choice,Speed. Yes/No,Speed. Caption Matching,Speed. Caption Generation,Event Order. Multi-Choice,Event Order. Yes/No,Event Order. Caption Matching,Event Order. Caption Generation,Attribute Change. Multi-Choice,Attribute Change. Yes/No,Attribute Change. Caption Matching,Attribute Change. Caption Generation
|
| 2 |
+
Random,Others,-,48.31,66.71,33.8,61.53,47.24,18.16,30.12,21.56,64.13,83.28,70.82,72.75,72.49,83.65,65.98,60.6,67.75,39.83,10.06,48.97,73.41,28.69,25.93,90.31,65.94
|
| 3 |
+
[VideoChat-7B](https://github.com/OpenGVLab/Ask-Anything),Video-LLM,7B,26.47,94.12,42.23,55.56,71.9,35.08,86.8,97.23,95.45,91.23,69.17,19.82,45.5,32.3,48.16,31.83,19.13,44.73,20.71,36.68,61.13,87.71,28.19,26.12,16.33
|
| 4 |
+
Gemini,Video-LLM,-,5.1,61.4,65.71,35.03,50.61,12.5,18.74,33.16,8.16,21.18,3.02,37.25,75.82,87.79,31.66,83.32,41.48,47.26,33.73,54.57,31.64,58.51,4.88,55.22,65.75
|
| 5 |
+
llava_phi_2.7,Image-LLM,-,97.64,81.61,39.3,54.9,17.11,33.57,13.78,76.95,90.81,3.07,5.98,14.63,23.62,15.46,88.03,22.58,21.46,88.25,35.72,85.05,58.54,86.19,74.07,57.24,0.9
|
| 6 |
+
,[],-,49.77,45.57,56.38,63.34,34.83,76.04,74.32,87.88,50.76,35.65,50.28,58.42,23.2,35.22,51.82,53.82,28.67,37.75,49.21,59.0,38.25,40.97,51.12,58.33,33.59
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
file/result.csv.bak
DELETED
|
@@ -1,5 +0,0 @@
|
|
| 1 |
-
Model,Avg. All,Avg. Multi-Choice,Avg. Yes/No,Avg. Caption Matching,Avg. Caption Generation,Action. Multi-Choice,Action. Yes/No,Action. Caption Matching,Action. Caption Generation,Direction. Multi-Choice,Direction. Yes/No,Direction. Caption Matching,Direction. Caption Generation,Speed. Multi-Choice,Speed. Yes/No,Speed. Caption Matching,Speed. Caption Generation,Event Order. Multi-Choice,Event Order. Yes/No,Event Order. Caption Matching,Event Order. Caption Generation,Attribute Change. Multi-Choice,Attribute Change. Yes/No,Attribute Change. Caption Matching,Attribute Change. Caption Generation
|
| 2 |
-
Random,48.31,66.71,33.8,61.53,47.24,18.16,30.12,21.56,64.13,83.28,70.82,72.75,72.49,83.65,65.98,60.6,67.75,39.83,10.06,48.97,73.41,28.69,25.93,90.31,65.94
|
| 3 |
-
[VideoChat-7B](https://github.com/OpenGVLab/Ask-Anything),26.47,94.12,42.23,55.56,71.9,35.08,86.8,97.23,95.45,91.23,69.17,19.82,45.5,32.3,48.16,31.83,19.13,44.73,20.71,36.68,61.13,87.71,28.19,26.12,16.33
|
| 4 |
-
Gemini,5.1,61.4,65.71,35.03,50.61,12.5,18.74,33.16,8.16,21.18,3.02,37.25,75.82,87.79,31.66,83.32,41.48,47.26,33.73,54.57,31.64,58.51,4.88,55.22,65.75
|
| 5 |
-
llava_phi_2.7,97.64,81.61,39.3,54.9,17.11,33.57,13.78,76.95,90.81,3.07,5.98,14.63,23.62,15.46,88.03,22.58,21.46,88.25,35.72,85.05,58.54,86.19,74.07,57.24,0.9
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/compute.py
CHANGED
|
@@ -8,85 +8,52 @@ import csv
|
|
| 8 |
def chatgpt_json(merge_file):
|
| 9 |
# chat results
|
| 10 |
merge_data = merge_file.decode("utf-8")
|
|
|
|
|
|
|
| 11 |
merge_data = eval(merge_data)
|
| 12 |
-
correct_answer_file = 'file/ANSWER.json'
|
| 13 |
-
with open(correct_answer_file, 'r', encoding='utf-8') as f:
|
| 14 |
-
correct_answer_data = json.load(f)
|
| 15 |
|
| 16 |
dataset_scores_dict = {}
|
| 17 |
-
for dataset_name,
|
| 18 |
|
| 19 |
-
total_nums =
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
|
| 26 |
-
|
| 27 |
-
dataset_scores_dict[dataset_name] = round(correct / total_nums , 4)
|
| 28 |
return dataset_scores_dict
|
| 29 |
|
| 30 |
|
| 31 |
def compute_scores(merge_file):
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
}
|
| 60 |
-
|
| 61 |
-
# Video-exclusive Understanding score
|
| 62 |
-
exclusive_understanding_weight = dataset_weight[1]
|
| 63 |
-
weights_sum = sum(exclusive_understanding_weight.values())
|
| 64 |
-
exclusive_understanding_score = 0
|
| 65 |
-
# import ipdb; ipdb.set_trace()
|
| 66 |
-
for dataset_name, weight in exclusive_understanding_weight.items():
|
| 67 |
-
exclusive_understanding_score += weight * dataset_score_dict[dataset_name] / weights_sum * 100
|
| 68 |
-
|
| 69 |
-
# Prior Knowledge-based Question-answer
|
| 70 |
-
prior_QA_weight = dataset_weight[2]
|
| 71 |
-
weights_sum = sum(prior_QA_weight.values())
|
| 72 |
-
prior_QA_score = 0
|
| 73 |
-
for dataset_name, weight in prior_QA_weight.items():
|
| 74 |
-
prior_QA_score += weight * dataset_score_dict[dataset_name] / weights_sum *100
|
| 75 |
-
|
| 76 |
-
# Comprehension and Decision-making
|
| 77 |
-
com_and_dec_QA_weight = dataset_weight[3]
|
| 78 |
-
weights_sum = sum(com_and_dec_QA_weight.values())
|
| 79 |
-
com_and_dec_QA_score = 0
|
| 80 |
-
for dataset_name, weight in com_and_dec_QA_weight.items():
|
| 81 |
-
com_and_dec_QA_score += weight * dataset_score_dict[dataset_name] / weights_sum *100
|
| 82 |
-
|
| 83 |
-
dataset_score_dict['Exclusive_understanding'] = exclusive_understanding_score
|
| 84 |
-
dataset_score_dict['Prior_Knowledge'] = prior_QA_score
|
| 85 |
-
dataset_score_dict['Comprehension_and_Decision-making'] = com_and_dec_QA_score
|
| 86 |
-
|
| 87 |
-
# final score
|
| 88 |
-
final_score = sum([exclusive_understanding_score, prior_QA_score, com_and_dec_QA_score]) / 3
|
| 89 |
-
dataset_score_dict['final_score'] = final_score
|
| 90 |
|
| 91 |
# print(dataset_score_dict)
|
| 92 |
# with open(args.score_output_file, 'w', encoding='utf-8') as f:
|
|
@@ -95,24 +62,19 @@ def compute_scores(merge_file):
|
|
| 95 |
# ========================
|
| 96 |
data = [
|
| 97 |
|
| 98 |
-
["Avg. All", "Avg.
|
| 99 |
-
"
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
dataset_score_dict['MV'],
|
| 112 |
-
dataset_score_dict['NBA'],
|
| 113 |
-
dataset_score_dict['Driving-exam'],
|
| 114 |
-
dataset_score_dict['Driving-decision-making'],
|
| 115 |
-
dataset_score_dict['SQA3D'],
|
| 116 |
],
|
| 117 |
]
|
| 118 |
|
|
|
|
| 8 |
def chatgpt_json(merge_file):
|
| 9 |
# chat results
|
| 10 |
merge_data = merge_file.decode("utf-8")
|
| 11 |
+
merge_data = merge_data.replace(": true,", ": \"true\",")
|
| 12 |
+
merge_data = merge_data.replace(": false,", ": \"false\",")
|
| 13 |
merge_data = eval(merge_data)
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
dataset_scores_dict = {}
|
| 16 |
+
for dataset_name, dataset_results in merge_data.items():
|
| 17 |
|
| 18 |
+
correct, total_nums = 0, 0
|
| 19 |
+
for id in dataset_results:
|
| 20 |
+
for dim in dataset_results[id]:
|
| 21 |
+
for result in dataset_results[id][dim]:
|
| 22 |
+
correct += result['rating']
|
| 23 |
+
total_nums += 1
|
| 24 |
|
| 25 |
+
dataset_scores_dict[dataset_name] = round(correct / total_nums * 100, 2)
|
| 26 |
+
# dataset_scores_dict[dataset_name] = round(correct / total_nums , 4)
|
| 27 |
return dataset_scores_dict
|
| 28 |
|
| 29 |
|
| 30 |
def compute_scores(merge_file):
|
| 31 |
+
|
| 32 |
+
merge_data = merge_file.decode("utf-8")
|
| 33 |
+
merge_data = merge_data.replace(": true,", ": \"true\",")
|
| 34 |
+
merge_data = merge_data.replace(": false,", ": \"false\",")
|
| 35 |
+
merge_data = eval(merge_data)
|
| 36 |
+
|
| 37 |
+
dataset_scores_dict = {}
|
| 38 |
+
total_correct, total_num = 0, 0
|
| 39 |
+
eval_dims = ['action', 'speed', 'direction', 'order', 'attribute_change', 'avg']
|
| 40 |
+
for dataset_name, dataset_results in merge_data.items():
|
| 41 |
+
|
| 42 |
+
dataset_correct, dataset_num = {dim: 0 for dim in eval_dims}, {dim: 0 for dim in eval_dims}
|
| 43 |
+
for id in dataset_results:
|
| 44 |
+
for dim in dataset_results[id]:
|
| 45 |
+
for result in dataset_results[id][dim]:
|
| 46 |
+
dataset_correct['avg'] += result['rating']
|
| 47 |
+
dataset_correct[dim] += result['rating']
|
| 48 |
+
dataset_num['avg'] += 1
|
| 49 |
+
dataset_num[dim] += 1
|
| 50 |
+
|
| 51 |
+
total_correct += dataset_correct['avg']
|
| 52 |
+
total_num += dataset_num['avg']
|
| 53 |
+
for dim in eval_dims:
|
| 54 |
+
dataset_scores_dict[f"{dim}_{dataset_name}"] = round(dataset_correct[dim] / dataset_num[dim] * 100, 2)
|
| 55 |
+
|
| 56 |
+
dataset_scores_dict["avg_all"] = round(total_correct / total_num * 100, 2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
# print(dataset_score_dict)
|
| 59 |
# with open(args.score_output_file, 'w', encoding='utf-8') as f:
|
|
|
|
| 62 |
# ========================
|
| 63 |
data = [
|
| 64 |
|
| 65 |
+
["Avg. All", "Avg. Multi-Choice", "Avg. Yes/No", "Avg. Caption Matching", "Avg. Caption Generation",
|
| 66 |
+
"Action. Multi-Choice", "Action. Yes/No", "Action. Caption Matching", "Action. Caption Generation",
|
| 67 |
+
"Direction. Multi-Choice", "Direction. Yes/No", "Direction. Caption Matching", "Direction. Caption Generation",
|
| 68 |
+
"Speed. Multi-Choice", "Speed. Yes/No", "Speed. Caption Matching", "Speed. Caption Generation",
|
| 69 |
+
"Event Order. Multi-Choice", "Event Order. Yes/No", "Event Order. Caption Matching", "Event Order. Caption Generation",
|
| 70 |
+
"Attribute Change. Multi-Choice", "Attribute Change. Yes/No", "Attribute Change. Caption Matching", "Attribute Change. Caption Generation"],
|
| 71 |
+
|
| 72 |
+
[dataset_scores_dict["avg_all"], dataset_scores_dict["avg_multi-choice"], dataset_scores_dict["avg_yes_no"], dataset_scores_dict["avg_caption_matching"], dataset_scores_dict["avg_captioning"],
|
| 73 |
+
dataset_scores_dict['action_multi-choice'], dataset_scores_dict['action_yes_no'], dataset_scores_dict['action_caption_matching'], dataset_scores_dict['action_captioning'],
|
| 74 |
+
dataset_scores_dict['speed_multi-choice'], dataset_scores_dict['speed_yes_no'], dataset_scores_dict['speed_caption_matching'], dataset_scores_dict['speed_captioning'],
|
| 75 |
+
dataset_scores_dict['direction_multi-choice'], dataset_scores_dict['direction_yes_no'], dataset_scores_dict['direction_caption_matching'], dataset_scores_dict['direction_captioning'],
|
| 76 |
+
dataset_scores_dict['order_multi-choice'], dataset_scores_dict['order_yes_no'], dataset_scores_dict['order_caption_matching'], dataset_scores_dict['order_captioning'],
|
| 77 |
+
dataset_scores_dict['attribute_change_multi-choice'], dataset_scores_dict['attribute_change_yes_no'], dataset_scores_dict['attribute_change_caption_matching'], dataset_scores_dict['attribute_change_captioning'],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
],
|
| 79 |
]
|
| 80 |
|