Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,79 +1,278 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import AutoTokenizer
|
| 3 |
|
| 4 |
-
bert_tokenizer = AutoTokenizer.from_pretrained('openai-community/gpt2')
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
text = gr.Textbox(label="Your prompt to start decoding", value="Ok, I")
|
| 15 |
-
|
| 16 |
-
with gr.Row():
|
| 17 |
-
split_selection = gr.Dropdown(
|
| 18 |
-
choices=[
|
| 19 |
-
LABEL_TEXTSPLITTER,
|
| 20 |
-
LABEL_RECURSIVE,
|
| 21 |
-
],
|
| 22 |
-
value=LABEL_RECURSIVE,
|
| 23 |
-
label="Method to split chunks 🍞",
|
| 24 |
-
)
|
| 25 |
-
separators_selection = gr.Textbox(
|
| 26 |
-
elem_id="textbox_id",
|
| 27 |
-
value=["\n\n", "\n", " ", ""],
|
| 28 |
-
info="Separators used in RecursiveCharacterTextSplitter",
|
| 29 |
-
show_label=False, # or set label to an empty string if you want to keep its space
|
| 30 |
-
visible=True,
|
| 31 |
-
)
|
| 32 |
-
separator_preset_selection = gr.Radio(
|
| 33 |
-
['Default', 'Python', 'Markdown'],
|
| 34 |
-
label="Choose a preset",
|
| 35 |
-
info="This will apply a specific set of separators to RecursiveCharacterTextSplitter.",
|
| 36 |
-
visible=True,
|
| 37 |
-
)
|
| 38 |
-
with gr.Row():
|
| 39 |
-
length_unit_selection = gr.Dropdown(
|
| 40 |
-
choices=[
|
| 41 |
-
"Character count",
|
| 42 |
-
"Token count (BERT tokens)",
|
| 43 |
-
],
|
| 44 |
-
value="Character count",
|
| 45 |
-
label="Length function",
|
| 46 |
-
info="How should we measure our chunk lengths?",
|
| 47 |
-
)
|
| 48 |
-
slider_count = gr.Slider(
|
| 49 |
-
50, 500, value=200, step=1, label="Chunk length 📏", info="In the chosen unit."
|
| 50 |
-
)
|
| 51 |
-
chunk_overlap = gr.Slider(
|
| 52 |
-
0, 50, value=10, step=1, label="Overlap between chunks", info="In the chosen unit."
|
| 53 |
-
)
|
| 54 |
-
out = gr.HighlightedText(
|
| 55 |
-
label="Output",
|
| 56 |
-
show_legend=True,
|
| 57 |
-
show_label=False,
|
| 58 |
-
color_map={'Overlap': '#DADADA'}
|
| 59 |
-
)
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
)
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
[
|
| 75 |
-
outputs
|
| 76 |
)
|
| 77 |
-
|
| 78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
|
|
|
|
| 3 |
|
| 4 |
+
STYLE = """
|
| 5 |
+
@import url('https://fonts.googleapis.com/css2?family=Poppins:ital,wght@0,100;0,200;0,300;0,400;0,500;0,600;0,700;0,800;0,900;1,100;1,200;1,300;1,400;1,500;1,600;1,700;1,800;1,900&display=swap');
|
| 6 |
+
* {
|
| 7 |
+
padding: 0px;
|
| 8 |
+
margin: 0px;
|
| 9 |
+
box-sizing: border-box;
|
| 10 |
+
font-size: 16px;
|
| 11 |
+
}
|
| 12 |
+
body {
|
| 13 |
+
height: 100vh;
|
| 14 |
+
width: 100vw;
|
| 15 |
+
display: grid;
|
| 16 |
+
align-items: center;
|
| 17 |
+
font-family: 'Poppins', sans-serif;
|
| 18 |
+
}
|
| 19 |
+
.tree {
|
| 20 |
+
width: 100%;
|
| 21 |
+
height: auto;
|
| 22 |
+
text-align: center;
|
| 23 |
+
}
|
| 24 |
+
.tree ul {
|
| 25 |
+
padding-top: 20px;
|
| 26 |
+
position: relative;
|
| 27 |
+
transition: .5s;
|
| 28 |
+
}
|
| 29 |
+
.tree li {
|
| 30 |
+
display: flex;
|
| 31 |
+
flex-direction:row;
|
| 32 |
+
text-align: center;
|
| 33 |
+
list-style-type: none;
|
| 34 |
+
position: relative;
|
| 35 |
+
padding: 10px;
|
| 36 |
+
transition: .5s;
|
| 37 |
+
}
|
| 38 |
+
.tree li::before, .tree li::after {
|
| 39 |
+
content: '';
|
| 40 |
+
position: absolute;
|
| 41 |
+
top: 0;
|
| 42 |
+
right: 50%;
|
| 43 |
+
border-top: 1px solid #ccc;
|
| 44 |
+
width: 51%;
|
| 45 |
+
height: 10px;
|
| 46 |
+
}
|
| 47 |
+
.tree li::after {
|
| 48 |
+
right: auto;
|
| 49 |
+
left: 50%;
|
| 50 |
+
border-left: 1px solid #ccc;
|
| 51 |
+
}
|
| 52 |
+
.tree li:only-child::after, .tree li:only-child::before {
|
| 53 |
+
display: none;
|
| 54 |
+
}
|
| 55 |
+
.tree li:only-child {
|
| 56 |
+
padding-top: 0;
|
| 57 |
+
}
|
| 58 |
+
.tree li:first-child::before, .tree li:last-child::after {
|
| 59 |
+
border: 0 none;
|
| 60 |
+
}
|
| 61 |
+
.tree li:last-child::before {
|
| 62 |
+
border-right: 1px solid #ccc;
|
| 63 |
+
border-radius: 0 5px 0 0;
|
| 64 |
+
-webkit-border-radius: 0 5px 0 0;
|
| 65 |
+
-moz-border-radius: 0 5px 0 0;
|
| 66 |
+
}
|
| 67 |
+
.tree li:first-child::after {
|
| 68 |
+
border-radius: 5px 0 0 0;
|
| 69 |
+
-webkit-border-radius: 5px 0 0 0;
|
| 70 |
+
-moz-border-radius: 5px 0 0 0;
|
| 71 |
+
}
|
| 72 |
+
.tree ul ul::before {
|
| 73 |
+
content: '';
|
| 74 |
+
position: absolute;
|
| 75 |
+
top: 0;
|
| 76 |
+
left: 50%;
|
| 77 |
+
border-left: 1px solid #ccc;
|
| 78 |
+
width: 0;
|
| 79 |
+
height: 20px;
|
| 80 |
+
}
|
| 81 |
+
.tree li a {
|
| 82 |
+
border: 1px solid #ccc;
|
| 83 |
+
padding: 10px;
|
| 84 |
+
display: inline-grid;
|
| 85 |
+
border-radius: 5px;
|
| 86 |
+
text-decoration-line: none;
|
| 87 |
+
border-radius: 5px;
|
| 88 |
+
transition: .5s;
|
| 89 |
+
}
|
| 90 |
+
.tree li a img {
|
| 91 |
+
width: 50px;
|
| 92 |
+
height: 50px;
|
| 93 |
+
margin-bottom: 10px !important;
|
| 94 |
+
border-radius: 100px;
|
| 95 |
+
margin: auto;
|
| 96 |
+
}
|
| 97 |
+
.tree li a span {
|
| 98 |
+
border: 1px solid #ccc;
|
| 99 |
+
border-radius: 5px;
|
| 100 |
+
color: #666;
|
| 101 |
+
padding: 8px;
|
| 102 |
+
font-size: 12px;
|
| 103 |
+
text-transform: uppercase;
|
| 104 |
+
letter-spacing: 1px;
|
| 105 |
+
font-weight: 500;
|
| 106 |
+
}
|
| 107 |
+
/*Hover-Section*/
|
| 108 |
+
.tree li a:hover, .tree li a:hover i, .tree li a:hover span, .tree li a:hover+ul li a {
|
| 109 |
+
background: #c8e4f8;
|
| 110 |
+
color: #000;
|
| 111 |
+
border: 1px solid #94a0b4;
|
| 112 |
+
}
|
| 113 |
+
.tree li a:hover+ul li::after, .tree li a:hover+ul li::before, .tree li a:hover+ul::before, .tree li a:hover+ul ul::before {
|
| 114 |
+
border-color: #94a0b4;
|
| 115 |
+
}
|
| 116 |
+
"""
|
| 117 |
|
| 118 |
+
from transformers import GPT2Tokenizer, AutoModelForCausalLM
|
| 119 |
+
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
|
| 121 |
+
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
| 122 |
+
model = AutoModelForCausalLM.from_pretrained("gpt2")
|
| 123 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 124 |
+
|
| 125 |
+
def display_top_k_tokens(scores, sequences, beam_indices):
|
| 126 |
+
display = "<div style='display: flex; flex-direction:row;'>"
|
| 127 |
+
for i, sequence in enumerate(sequences):
|
| 128 |
+
markdown_table = f"""<p>Sequence {i}: {tokenizer.batch_decode(sequence)}<p><br>
|
| 129 |
+
<table>
|
| 130 |
+
<tr>
|
| 131 |
+
<th><b>Token</b></th>
|
| 132 |
+
<th><b>Probability</b></th>
|
| 133 |
+
</tr>"""
|
| 134 |
+
for step, step_scores in enumerate(scores):
|
| 135 |
+
markdown_table += f"""
|
| 136 |
+
<tr>
|
| 137 |
+
<td><b>Step {step}</b></td>
|
| 138 |
+
<td>=====</td>
|
| 139 |
+
</tr>"""
|
| 140 |
+
current_beam = beam_indices[i, step]
|
| 141 |
+
chosen_token = sequences[i, step]
|
| 142 |
+
for token_idx in np.argsort(step_scores[current_beam, :])[-5:]:
|
| 143 |
+
if token_idx == chosen_token:
|
| 144 |
+
markdown_table += f"""
|
| 145 |
+
<tr style="background-color:red">
|
| 146 |
+
<td>{tokenizer.decode([token_idx])}</td>
|
| 147 |
+
<td>{step_scores[current_beam, token_idx]}</td>
|
| 148 |
+
</tr>"""
|
| 149 |
+
else:
|
| 150 |
+
markdown_table += f"""
|
| 151 |
+
<tr>
|
| 152 |
+
<td>{tokenizer.decode([token_idx])}</td>
|
| 153 |
+
<td>{step_scores[current_beam, token_idx]}</td>
|
| 154 |
+
</tr>"""
|
| 155 |
+
markdown_table += "</table>"
|
| 156 |
+
display += markdown_table
|
| 157 |
+
display += "</div>"
|
| 158 |
+
print(display)
|
| 159 |
+
return display
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
def generate_html(token, node):
|
| 163 |
+
"""Recursively generate HTML for the tree."""
|
| 164 |
+
|
| 165 |
+
html_content = f" <ul> <a href='#'> <p> <b>{token}</b> </p> "
|
| 166 |
+
html_content += node["table"] if node["table"] is not None else ""
|
| 167 |
+
html_content += "</a>"
|
| 168 |
+
if len(node["children"].keys()) > 0:
|
| 169 |
+
html_content += "<li> "
|
| 170 |
+
for token, subnode in node["children"].items():
|
| 171 |
+
html_content += generate_html(token, subnode)
|
| 172 |
+
html_content += "</li>"
|
| 173 |
+
|
| 174 |
+
html_content += "</ul>"
|
| 175 |
+
|
| 176 |
+
return html_content
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
def generate_markdown_table(scores, top_k=4, chosen_tokens=None):
|
| 180 |
+
markdown_table = """
|
| 181 |
+
<table>
|
| 182 |
+
<tr>
|
| 183 |
+
<th><b>Token</b></th>
|
| 184 |
+
<th><b>Probability</b></th>
|
| 185 |
+
</tr>"""
|
| 186 |
+
for token_idx in np.argsort(scores)[-top_k:]:
|
| 187 |
+
token = tokenizer.decode([token_idx])
|
| 188 |
+
style = ""
|
| 189 |
+
if chosen_tokens and token in chosen_tokens:
|
| 190 |
+
style = "background-color:red"
|
| 191 |
+
markdown_table += f"""
|
| 192 |
+
<tr style={style}>
|
| 193 |
+
<td>{token}</td>
|
| 194 |
+
<td>{scores[token_idx]}</td>
|
| 195 |
+
</tr>"""
|
| 196 |
+
markdown_table += """
|
| 197 |
+
</table>"""
|
| 198 |
+
return markdown_table
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
def display_tree(scores, sequences, beam_indices):
|
| 202 |
+
display = """<body>
|
| 203 |
+
<div class="container">
|
| 204 |
+
<div class="row">
|
| 205 |
+
<div class="tree">"""
|
| 206 |
+
sequences = sequences.cpu().numpy()
|
| 207 |
+
print(tokenizer.batch_decode(sequences))
|
| 208 |
+
original_tree = {"table": None, "children": {}}
|
| 209 |
+
for sequence_ix in range(len(sequences)):
|
| 210 |
+
current_tree = original_tree
|
| 211 |
+
for step, step_scores in enumerate(scores):
|
| 212 |
+
current_token_choice = tokenizer.decode([sequences[sequence_ix, step]])
|
| 213 |
+
current_beam = beam_indices[sequence_ix, step]
|
| 214 |
+
|
| 215 |
+
if current_token_choice not in current_tree["children"]:
|
| 216 |
+
current_tree["children"][current_token_choice] = {
|
| 217 |
+
"table": None,
|
| 218 |
+
"children": {},
|
| 219 |
+
}
|
| 220 |
+
|
| 221 |
+
# Rewrite the probs table even if it was there before, since new chosen nodes have appeared in the children of current tree
|
| 222 |
+
markdown_table = generate_markdown_table(
|
| 223 |
+
step_scores[current_beam, :],
|
| 224 |
+
chosen_tokens=current_tree["children"].keys(),
|
| 225 |
+
)
|
| 226 |
+
current_tree["table"] = markdown_table
|
| 227 |
+
|
| 228 |
+
current_tree = current_tree["children"][current_token_choice]
|
| 229 |
+
|
| 230 |
+
display += generate_html("Today is", original_tree)
|
| 231 |
+
|
| 232 |
+
display += """
|
| 233 |
+
</div>
|
| 234 |
+
</div>
|
| 235 |
+
</div>
|
| 236 |
+
</body>
|
| 237 |
+
"""
|
| 238 |
+
print(display)
|
| 239 |
+
return display
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
def get_tables(input_text, number_steps, number_beams):
|
| 243 |
+
inputs = tokenizer([input_text], return_tensors="pt")
|
| 244 |
+
|
| 245 |
+
outputs = model.generate(
|
| 246 |
+
**inputs,
|
| 247 |
+
max_new_tokens=number_steps,
|
| 248 |
+
num_beams=number_beams,
|
| 249 |
+
num_return_sequences=number_beams,
|
| 250 |
+
return_dict_in_generate=True,
|
| 251 |
+
output_scores=True,
|
| 252 |
+
top_k=5,
|
| 253 |
+
temperature=1.0,
|
| 254 |
+
do_sample=True,
|
| 255 |
)
|
| 256 |
+
|
| 257 |
+
tables = display_tree(
|
| 258 |
+
outputs.scores,
|
| 259 |
+
outputs.sequences[:, len(inputs) :],
|
| 260 |
+
outputs.beam_indices[:, : -len(inputs)],
|
| 261 |
)
|
| 262 |
+
return tables
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
with gr.Blocks(
|
| 266 |
+
theme=gr.themes.Soft(
|
| 267 |
+
text_size="lg", font=["monospace"], primary_hue=gr.themes.colors.green
|
| 268 |
+
),
|
| 269 |
+
css=STYLE,
|
| 270 |
+
) as demo:
|
| 271 |
+
text = gr.Textbox(label="Sentence to decode from🪶", value="Today is")
|
| 272 |
+
steps = gr.Slider(label="Number of steps", minimum=1, maximum=10, step=1, value=4)
|
| 273 |
+
beams = gr.Slider(label="Number of beams", minimum=1, maximum=3, step=1, value=3)
|
| 274 |
+
button = gr.Button()
|
| 275 |
+
out = gr.Markdown(label="Output")
|
| 276 |
+
button.click(get_tables, inputs=[text, steps, beams], outputs=out)
|
| 277 |
+
|
| 278 |
demo.launch()
|