Spaces:
Sleeping
Sleeping
File size: 2,538 Bytes
5fc69e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
from fastapi import Request
from pipeline.preprocess import preprocess_input
from pipeline.generator import generate_response
from pipeline.postprocess import postprocess_pipeline, fallback_final_check
from models.fallback_model import generate_fallback_response
from prompt_builder import build_main_prompt, build_fallback_prompt # 수정된 prompt 빌더 사용
async def handle_dialogue(
request: Request,
session_id: str,
npc_id: str,
user_input: str,
context: dict,
) -> dict:
"""
전체 대화 처리 파이프라인:
1) preprocess_input() → pre 데이터 생성
2) main 경로: main prompt → main model → postprocess_pipeline()
3) fallback 경로: fallback prompt → fallback model → fallback_final_check()
"""
# 1. Preprocess
pre = await preprocess_input(request, session_id, npc_id, user_input, context)
# 2. Fallback 경로
if not pre.get("is_valid", True):
# fallback prompt 구성 (내부에서 additional_trigger 기반 분기)
fb_prompt = build_fallback_prompt(pre, session_id, npc_id)
# fallback model 호출
fb_raw = await generate_fallback_response(request, fb_prompt)
# fallback 전용 최종 검증
fb_checked = await fallback_final_check(
request=request,
fb_response=fb_raw,
player_utt=pre["player_utterance"],
npc_config=pre["tags"],
action_delta=pre.get("trigger_meta", {})
)
# payload 구성 후 반환
return {
"session_id" : session_id,
"npc_output_text": fb_checked,
"flags": {}, # fallback은 flag/delta 이미 pre에서 확정
"deltas": pre.get("trigger_meta", {}).get("delta", {}),
"meta": {
"npc_id": pre["npc_id"],
"quest_stage": pre["game_state"].get("quest_stage", "default"),
"location": pre["game_state"].get("location", context.get("location", "unknown"))
}
}
# 3. Main 경로
main_prompt = build_main_prompt(pre, session_id, npc_id)
# main model 호출
result = await generate_response(session_id, npc_id, main_prompt, max_tokens=200)
# postprocess_pipeline에서 최종 payload 생성
return_payload = await postprocess_pipeline(
request=request,
pre_data=pre, # preprocess 결과 전체 전달
model_payload=result, # main model 출력
context=context
)
return return_payload
|