Spaces:
Sleeping
Sleeping
File size: 8,917 Bytes
5fc69e4 17ee8b7 5fc69e4 17ee8b7 5fc69e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import json, torch
from fastapi import Request
from manager.agent_manager import agent_manager
from models.fallback_model import generate_fallback_response
from utils.context_parser import ContextParser
from sentence_transformers import util
def _short_history(context: dict, max_turns: int = 3) -> list:
short_history = []
for h in context.get("dialogue_history", [])[-max_turns:]:
if "player" in h and "npc" in h:
short_history.append({"role": "player", "text": h["player"]})
short_history.append({"role": "npc", "text": h["npc"]})
return short_history
# def _load_forbidden_trigger_data(npc_id: str) -> dict:
# docs = retrieve(f"{npc_id}:forbidden_trigger_list", filters={"npc_id": npc_id}, top_k=1)
# if not docs:
# return {}
# try:
# return json.loads(docs[0]) if isinstance(docs[0], str) else docs[0]
# except Exception:
# return {}
def _semantic_match_embedder(embedder, user_input: str, trigger_texts: list, threshold: float = 0.75):
if not trigger_texts:
return (False, 0.0, None)
inp_emb = embedder.encode(user_input, convert_to_tensor=True)
trg_embs = embedder.encode(trigger_texts, convert_to_tensor=True)
cos_scores = util.cos_sim(inp_emb, trg_embs).squeeze(0)
max_score, idx = torch.max(cos_scores, dim=0)
score_val = float(max_score.item())
matched_text = trigger_texts[int(idx.item())]
return (score_val >= threshold, score_val, matched_text)
async def extract_emotion_via_fallback(request: Request, user_input: str) -> str:
prompt = (
"๋ค์ ๋ฌธ์ฅ์ ํ์ ๊ฐ์ ์ ํ ๋จ์ด ๋๋ ์งง์ ๋ฌธ์ฅ์ผ๋ก ์ค๋ช
ํ์์ค.\n\n"
f"[๋ฌธ์ฅ]\n{user_input}\n\n"
"์ง์:\n- ๊ฐ์ ์ ์ง์ ์ ์ผ๋ก ํํํ์ง ์์๋ ๋ฌธ๋งฅ์ ํตํด ์ถ๋ก ํ์์ค.\n"
"- ๊ฐ๋ฅํ ๊ฒฝ์ฐ ๊ฐ์ ์ ๊ฐ๋๋ ๋์์ค๋ ๋ฐ์ํ์์ค.\n"
"- ์: ๋ถ๋
ธ, ์ฌํ, ํผ๋, ๊ธฐ๋, ๋ฌด๊ด์ฌ, ์ด์กฐํจ ๋ฑ\n"
"- ๋จ์ด ํ๋ ๋๋ ์งง์ ๋ฌธ์ฅ์ผ๋ก๋ง ์ถ๋ ฅํ์์ค.\n\n"
"์ ๋ต:"
)
response = await generate_fallback_response(request, prompt)
return response.strip()
async def _llm_trigger_check(request: Request, user_input: str, label_list: list) -> bool:
if not label_list:
return False
criteria_block = "\n".join(f"- {c}" for c in label_list)
prompt = (
"๋ค์์ ์๋ฏธ ๋น๊ต๋ฅผ ์ํ ํ๋จ ๊ธฐ์ค๊ณผ ๊ฒ์ฌ ๋์์
๋๋ค.\n\n"
"[CRITERIA]\n"
f"{criteria_block}\n"
"[/CRITERIA]\n\n"
"[INPUT]\n"
f"{user_input}\n"
"[/INPUT]\n\n"
"์ง์:\n"
"- [INPUT] ๋ด์ฉ์ด [CRITERIA] ํญ๋ชฉ ์ค ํ๋์ ์๋ฏธ๊ฐ ๊ฐ๊ฑฐ๋ ์ ์ฌํ๋ฉด YES, ๊ทธ๋ ์ง ์์ผ๋ฉด NO๋ง ์ถ๋ ฅํ์์ค.\n"
"- ๋จ์ด ๊ทธ๋๋ก ํฌํจ๋์ง ์์๋ ์๋ฏธ๊ฐ ์ ์ฌํ๋ฉด YES๋ก ๊ฐ์ฃผํ์์ค.\n"
"- ํ์ ์ด ์๊ฑฐ๋ ํ๋จ์ด ์ ๋งคํ๋ฉด NO๋ฅผ ์ถ๋ ฅํ์์ค.\n\n"
"์ ๋ต:"
)
txt = await generate_fallback_response(request, prompt)
ans = txt.strip().upper()
normalized = ans.replace(".", "").replace("!", "").strip()
return (
normalized == "YES" or
normalized == "Y" or
normalized.startswith("YES") or
normalized.startswith("Y") or
normalized.startswith("์") or
normalized.startswith("๋ค")
)
async def preprocess_input(
request: Request,
session_id: str,
npc_id: str,
user_input: str,
context: dict
) -> dict:
parser = ContextParser(context)
emotion = await extract_emotion_via_fallback(request, user_input)
require_items = context.get("require", {}).get("items", [])
require_actions = context.get("require", {}).get("actions", [])
require_game_state = context.get("require", {}).get("game_state", [])
require_delta = context.get("require", {}).get("delta", {})
quest_stage = parser.game.get("quest_stage", "default")
location = parser.game.get("location", context.get("location", "unknown"))
# --- RAG bundle ๋ก๋ ---
agent = agent_manager.get_agent(npc_id)
bundle = agent.load_rag_bundle(quest_stage, location)
# === 1์ฐจ ๊ฒ์ฌ: trigger_def ๊ธฐ๋ฐ ===
td_docs = bundle.get("trigger_def", [])
if td_docs:
td = td_docs[0]
trig = td.get("trigger", {})
text_ok = not trig.get("required_text") or any(t in user_input for t in trig["required_text"])
items_ok = not trig.get("required_items", {}).get("mandatory") or set(trig["required_items"]["mandatory"]).issubset(set(require_items))
actions_ok = not trig.get("required_actions", {}).get("mandatory") or set(trig["required_actions"]["mandatory"]).issubset(set(require_actions))
gs_ok = not trig.get("required_game_state", {}).get("mandatory") or set(trig["required_game_state"]["mandatory"]).issubset(set(require_game_state))
delta_ok = all(require_delta.get(k, 0) >= v for k, v in trig.get("required_delta", {}).get("mandatory", {}).items())
if text_ok and items_ok and actions_ok and gs_ok and delta_ok:
return {
"session_id": session_id,
"player_utterance": user_input,
"npc_id": npc_id,
"tags": parser.npc,
"player_state": parser.player,
"game_state": parser.game,
"context": _short_history(context),
"emotion": emotion,
"triggers": trig,
"is_valid": True,
"additional_trigger": None,
"rag_main_docs": (
td_docs
+ bundle.get("lore", [])
+ bundle.get("description", [])
+ bundle.get("npc_persona", [])
+ bundle.get("dialogue_turn", [])
+ bundle.get("flag_def", [])
+ bundle.get("main_res_validate", [])
),
"rag_fallback_docs": bundle.get("fallback", []) + bundle.get("npc_persona", []),
"trigger_meta": {}
}
# === 2์ฐจ ๊ฒ์ฌ: forbidden-trigger ๊ธฐ๋ฐ ===
forbidden_data = bundle.get("forbidden_trigger_list", [{}])[0]
keywords = forbidden_data.get("triggers", {}).get("keywords", [])
trigger_texts = forbidden_data.get("triggers", {}).get("text", [])
embedder = request.app.state.embedder
matched_key = None
confidence = 0.0
kw_match = None
txt_match = None
# 1. keyword ์ ์ฌ๋ ๊ฒ์ฌ
kw_hit, kw_score, kw_match = _semantic_match_embedder(embedder, user_input, keywords, threshold=0.75)
# 2. text ์ ์ฌ๋ ๊ฒ์ฌ
txt_hit, txt_score, txt_match = _semantic_match_embedder(embedder, user_input, trigger_texts, threshold=0.75)
# 3. ์ ์ฌ๋ ๋์ ์ชฝ ์ ํ
if kw_hit and (kw_score >= txt_score):
matched_key = "keyword_match"
confidence = kw_score
elif txt_hit:
matched_key = "text_match"
confidence = txt_score
elif max(kw_score, txt_score) >= 0.65:
# ๊ฐ์ฅ ๊ฐ๊น์ด keyword์ text๋ง label ํ๋ณด๋ก ์ ๋ฌ
label_candidates = []
if kw_match:
label_candidates.append(kw_match)
if txt_match:
label_candidates.append(txt_match)
if await _llm_trigger_check(request, user_input, label_candidates):
matched_key = "semantic_match_llm"
confidence = max(kw_score, txt_score)
# === trigger_meta ๋งค์นญ ๋ณด์ ===
actual_trigger = None
if matched_key:
# kw_match๋ txt_match ๊ฐ์ด ์ค์ trigger_meta.trigger ๊ฐ๊ณผ ์ผ์นํ๋์ง ํ์ธ
for tm in bundle.get("trigger_meta", []):
if tm.get("trigger") in (kw_match, txt_match):
actual_trigger = tm.get("trigger")
break
trigger_meta = {}
if actual_trigger:
trigger_meta = next((tm for tm in bundle.get("trigger_meta", []) if tm.get("trigger") == actual_trigger), {})
trigger_meta["confidence"] = confidence
additional_trigger = bool(actual_trigger)
return {
"session_id": session_id,
"player_utterance": user_input,
"npc_id": npc_id,
"tags": parser.npc,
"player_state": parser.player,
"game_state": parser.game,
"context": _short_history(context),
"emotion": emotion,
"triggers": [],
"is_valid": False,
"additional_trigger": additional_trigger,
"rag_main_docs": (
bundle.get("lore", [])
+ bundle.get("description", [])
+ bundle.get("npc_persona", [])
+ bundle.get("dialogue_turn", [])
+ bundle.get("flag_def", [])
+ bundle.get("main_res_validate", [])
),
"rag_fallback_docs": bundle.get("fallback", []) + bundle.get("npc_persona", []),
"trigger_meta": trigger_meta
}
|