Update tooling.py
Browse files- tooling.py +128 -125
tooling.py
CHANGED
|
@@ -1,125 +1,128 @@
|
|
| 1 |
-
from smolagents import Tool
|
| 2 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
|
| 3 |
-
import torch
|
| 4 |
-
from wikipedia_utils import *
|
| 5 |
-
from youtube_utils import *
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
class MathModelQuerer(Tool):
|
| 9 |
-
name = "math_model"
|
| 10 |
-
description = "Answers advanced math questions using a pretrained math model."
|
| 11 |
-
|
| 12 |
-
inputs = {
|
| 13 |
-
"problem": {
|
| 14 |
-
"type": "string",
|
| 15 |
-
"description": "Math problem to solve.",
|
| 16 |
-
}
|
| 17 |
-
}
|
| 18 |
-
|
| 19 |
-
output_type = "string"
|
| 20 |
-
|
| 21 |
-
def __init__(self, model_name="deepseek-ai/deepseek-math-7b-base"):
|
| 22 |
-
print(f"Loading math model: {model_name}")
|
| 23 |
-
|
| 24 |
-
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 25 |
-
print("loaded tokenizer")
|
| 26 |
-
self.model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
|
| 27 |
-
print("loaded auto model")
|
| 28 |
-
|
| 29 |
-
self.model.generation_config = GenerationConfig.from_pretrained(model_name)
|
| 30 |
-
print("loaded coonfig")
|
| 31 |
-
|
| 32 |
-
self.model.generation_config.pad_token_id = self.model.generation_config.eos_token_id
|
| 33 |
-
print("loaded pad token")
|
| 34 |
-
|
| 35 |
-
def forward(self, problem: str) -> str:
|
| 36 |
-
try:
|
| 37 |
-
print(f"[MathModelTool] Question: {problem}")
|
| 38 |
-
|
| 39 |
-
inputs = self.tokenizer(problem, return_tensors="pt")
|
| 40 |
-
outputs = self.model.generate(**inputs, max_new_tokens=100)
|
| 41 |
-
|
| 42 |
-
result = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 43 |
-
|
| 44 |
-
return result
|
| 45 |
-
except:
|
| 46 |
-
return f"Failed using the tool {self.name}"
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
class CodeModelQuerer(Tool):
|
| 50 |
-
name = "code_querer"
|
| 51 |
-
description = "Given a problem description, generates a piece of code used specialized LLM model. Returns output of the model."
|
| 52 |
-
|
| 53 |
-
inputs = {
|
| 54 |
-
"problem": {
|
| 55 |
-
"type": "string",
|
| 56 |
-
"description": "Description of a code sample to be generated",
|
| 57 |
-
}
|
| 58 |
-
}
|
| 59 |
-
|
| 60 |
-
output_type = "string"
|
| 61 |
-
|
| 62 |
-
def __init__(self, model_name="Qwen/Qwen2.5-Coder-32B-Instruct"):
|
| 63 |
-
from smolagents import HfApiModel
|
| 64 |
-
print(f"Loading llm for Code tool: {model_name}")
|
| 65 |
-
self.model = HfApiModel()
|
| 66 |
-
|
| 67 |
-
def forward(self, problem: str) -> str:
|
| 68 |
-
try:
|
| 69 |
-
return self.model.generate(problem, max_new_tokens=512)
|
| 70 |
-
except:
|
| 71 |
-
return f"Failed using the tool {self.name}"
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
class WikipediaPageFetcher(Tool):
|
| 75 |
-
name = "wiki_page_fetcher"
|
| 76 |
-
description = "Searches Wikipedia and provides summary about the queried topic as a string
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
return
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
"
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from smolagents import Tool
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
|
| 3 |
+
import torch
|
| 4 |
+
from wikipedia_utils import *
|
| 5 |
+
from youtube_utils import *
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class MathModelQuerer(Tool):
|
| 9 |
+
name = "math_model"
|
| 10 |
+
description = "Answers advanced math questions using a pretrained math model."
|
| 11 |
+
|
| 12 |
+
inputs = {
|
| 13 |
+
"problem": {
|
| 14 |
+
"type": "string",
|
| 15 |
+
"description": "Math problem to solve.",
|
| 16 |
+
}
|
| 17 |
+
}
|
| 18 |
+
|
| 19 |
+
output_type = "string"
|
| 20 |
+
|
| 21 |
+
def __init__(self, model_name="deepseek-ai/deepseek-math-7b-base"):
|
| 22 |
+
print(f"Loading math model: {model_name}")
|
| 23 |
+
|
| 24 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 25 |
+
print("loaded tokenizer")
|
| 26 |
+
self.model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
|
| 27 |
+
print("loaded auto model")
|
| 28 |
+
|
| 29 |
+
self.model.generation_config = GenerationConfig.from_pretrained(model_name)
|
| 30 |
+
print("loaded coonfig")
|
| 31 |
+
|
| 32 |
+
self.model.generation_config.pad_token_id = self.model.generation_config.eos_token_id
|
| 33 |
+
print("loaded pad token")
|
| 34 |
+
|
| 35 |
+
def forward(self, problem: str) -> str:
|
| 36 |
+
try:
|
| 37 |
+
print(f"[MathModelTool] Question: {problem}")
|
| 38 |
+
|
| 39 |
+
inputs = self.tokenizer(problem, return_tensors="pt")
|
| 40 |
+
outputs = self.model.generate(**inputs, max_new_tokens=100)
|
| 41 |
+
|
| 42 |
+
result = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 43 |
+
|
| 44 |
+
return result
|
| 45 |
+
except:
|
| 46 |
+
return f"Failed using the tool {self.name}"
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
class CodeModelQuerer(Tool):
|
| 50 |
+
name = "code_querer"
|
| 51 |
+
description = "Given a problem description, generates a piece of code used specialized LLM model. Returns output of the model."
|
| 52 |
+
|
| 53 |
+
inputs = {
|
| 54 |
+
"problem": {
|
| 55 |
+
"type": "string",
|
| 56 |
+
"description": "Description of a code sample to be generated",
|
| 57 |
+
}
|
| 58 |
+
}
|
| 59 |
+
|
| 60 |
+
output_type = "string"
|
| 61 |
+
|
| 62 |
+
def __init__(self, model_name="Qwen/Qwen2.5-Coder-32B-Instruct"):
|
| 63 |
+
from smolagents import HfApiModel
|
| 64 |
+
print(f"Loading llm for Code tool: {model_name}")
|
| 65 |
+
self.model = HfApiModel()
|
| 66 |
+
|
| 67 |
+
def forward(self, problem: str) -> str:
|
| 68 |
+
try:
|
| 69 |
+
return self.model.generate(problem, max_new_tokens=512)
|
| 70 |
+
except:
|
| 71 |
+
return f"Failed using the tool {self.name}"
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
class WikipediaPageFetcher(Tool):
|
| 75 |
+
name = "wiki_page_fetcher"
|
| 76 |
+
description = "Searches Wikipedia and provides summary about the queried topic as a string.\
|
| 77 |
+
Use for all wikipedia queries regardless of the language and version.\
|
| 78 |
+
Only provide query as an input parameter."
|
| 79 |
+
|
| 80 |
+
inputs = {
|
| 81 |
+
"query": {
|
| 82 |
+
"type": "string",
|
| 83 |
+
"description": "Topic of wikipedia search",
|
| 84 |
+
}
|
| 85 |
+
}
|
| 86 |
+
|
| 87 |
+
output_type = "string"
|
| 88 |
+
|
| 89 |
+
def forward(self, query: str) -> str:
|
| 90 |
+
try:
|
| 91 |
+
wiki_query = query(query)
|
| 92 |
+
wiki_page = fetch_wikipedia_page(wiki_query)
|
| 93 |
+
return wiki_page
|
| 94 |
+
except:
|
| 95 |
+
return f"Failed using the tool {self.name}"
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
class YoutubeTranscriptFetcher(Tool):
|
| 99 |
+
name = "youtube_transcript_fetcher"
|
| 100 |
+
description = "Attempts to fetch a youtube transcript in english, if provided with a query \\" \
|
| 101 |
+
" that contains a youtube link with video id. Returns a transcript content as a string. Alternatively, if tool is provided with a\\"" \
|
| 102 |
+
youtube video id, it can fetch the transcript directly. Video id consist of last 11 strings of the url. Only provide this parameter, if the video id doesn't have\
|
| 103 |
+
to be parsed from a url."
|
| 104 |
+
|
| 105 |
+
inputs = {
|
| 106 |
+
"query": {
|
| 107 |
+
"type": "string",
|
| 108 |
+
"description": "A query that includes youtube id."
|
| 109 |
+
},
|
| 110 |
+
"video_id" : {
|
| 111 |
+
"type" : "string",
|
| 112 |
+
"description" : "Optional string with video id from youtube.",
|
| 113 |
+
"nullable" : True
|
| 114 |
+
}
|
| 115 |
+
}
|
| 116 |
+
|
| 117 |
+
output_type = "string"
|
| 118 |
+
|
| 119 |
+
def forward(self, query: str, video_id=None) -> str:
|
| 120 |
+
try:
|
| 121 |
+
if video_id is None:
|
| 122 |
+
video_id = get_youtube_video_id(query)
|
| 123 |
+
|
| 124 |
+
fetched_transcript = fetch_transcript_english(video_id)
|
| 125 |
+
|
| 126 |
+
return post_process_transcript(fetched_transcript)
|
| 127 |
+
except:
|
| 128 |
+
return f"Failed using the tool {self.name}"
|