Update tooling.py
Browse files- tooling.py +1 -63
tooling.py
CHANGED
|
@@ -1,5 +1,4 @@
|
|
| 1 |
-
from smolagents import
|
| 2 |
-
Tool
|
| 3 |
import hashlib
|
| 4 |
import json
|
| 5 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
@@ -29,64 +28,3 @@ class ModelMathTool(Tool):
|
|
| 29 |
response = self.model.__call__(problem)
|
| 30 |
return response
|
| 31 |
|
| 32 |
-
|
| 33 |
-
# (Keep Constants as is)
|
| 34 |
-
# --- Constants ---
|
| 35 |
-
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 36 |
-
|
| 37 |
-
web_search = DuckDuckGoSearchTool()
|
| 38 |
-
python_interpreter = PythonInterpreterTool()
|
| 39 |
-
visit_webpage_tool = VisitWebpageTool()
|
| 40 |
-
model_math_tool = ModelMathTool()
|
| 41 |
-
|
| 42 |
-
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
|
| 43 |
-
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud'
|
| 44 |
-
|
| 45 |
-
model = HfApiModel(model_id="HuggingFaceH4/zephyr-7b-beta", max_tokens=512)
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
def get_cache_key(question: str) -> str:
|
| 49 |
-
return hashlib.sha256(question.encode()).hexdigest()
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
def load_cached_answer(question: str) -> str | None:
|
| 53 |
-
key = get_cache_key(question)
|
| 54 |
-
path = f"cache/{key}.json"
|
| 55 |
-
if os.path.exists(path):
|
| 56 |
-
with open(path, "r") as f:
|
| 57 |
-
data = json.load(f)
|
| 58 |
-
return data.get("answer")
|
| 59 |
-
return None
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
def cache_answer(question: str, answer: str):
|
| 63 |
-
key = get_cache_key(question)
|
| 64 |
-
path = f"cache/{key}.json"
|
| 65 |
-
with open(path, "w") as f:
|
| 66 |
-
json.dump({"question": question, "answer": answer}, f)
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
class BasicAgent:
|
| 70 |
-
def __init__(self):
|
| 71 |
-
print("BasicAgent initialized.")
|
| 72 |
-
self.agent = CodeAgent(
|
| 73 |
-
model=model,
|
| 74 |
-
tools=[model_math_tool],
|
| 75 |
-
max_steps=1,
|
| 76 |
-
verbosity_level=0,
|
| 77 |
-
grammar=None,
|
| 78 |
-
planning_interval=3,
|
| 79 |
-
|
| 80 |
-
)
|
| 81 |
-
|
| 82 |
-
def __call__(self, question: str) -> str:
|
| 83 |
-
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
| 84 |
-
answer = self.agent.run(question)
|
| 85 |
-
return answer
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
agent = BasicAgent()
|
| 90 |
-
|
| 91 |
-
response = agent.__call__(question="How much is 2*2?")
|
| 92 |
-
print(response)
|
|
|
|
| 1 |
+
from smolagents import Tool
|
|
|
|
| 2 |
import hashlib
|
| 3 |
import json
|
| 4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
| 28 |
response = self.model.__call__(problem)
|
| 29 |
return response
|
| 30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|