New tooling for math, youtube and wikipedia.
Browse filesadded math, wikipedia and youtube tools. Testing indexing questions
- app.py +287 -301
- requirements.txt +10 -7
- tooling.py +125 -65
- wikipedia_utils.py +4 -12
app.py
CHANGED
|
@@ -1,301 +1,287 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import gradio as gr
|
| 3 |
-
import requests
|
| 4 |
-
import inspect
|
| 5 |
-
import pandas as pd
|
| 6 |
-
from smolagents import DuckDuckGoSearchTool,HfApiModel,
|
| 7 |
-
import hashlib
|
| 8 |
-
import json
|
| 9 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 10 |
-
import wikipedia
|
| 11 |
-
import torch
|
| 12 |
-
from tooling import
|
| 13 |
-
|
| 14 |
-
# (Keep Constants as is)
|
| 15 |
-
# --- Constants ---
|
| 16 |
-
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 17 |
-
|
| 18 |
-
# --- Basic Agent Definition ---
|
| 19 |
-
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
| 20 |
-
import os
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
def
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
print(f"
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
#
|
| 80 |
-
|
| 81 |
-
model = HfApiModel()
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
#
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
f"
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
else:
|
| 289 |
-
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
| 290 |
-
|
| 291 |
-
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
| 292 |
-
print(f"✅ SPACE_ID found: {space_id_startup}")
|
| 293 |
-
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
| 294 |
-
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
| 295 |
-
else:
|
| 296 |
-
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
| 297 |
-
|
| 298 |
-
print("-"*(60 + len(" App Starting ")) + "\n")
|
| 299 |
-
|
| 300 |
-
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
| 301 |
-
demo.launch(debug=True, share=False)
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import requests
|
| 4 |
+
import inspect
|
| 5 |
+
import pandas as pd
|
| 6 |
+
from smolagents import DuckDuckGoSearchTool, HfApiModel, PythonInterpreterTool, VisitWebpageTool, CodeAgent
|
| 7 |
+
import hashlib
|
| 8 |
+
import json
|
| 9 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, TransformersEngine
|
| 10 |
+
import wikipedia
|
| 11 |
+
import torch
|
| 12 |
+
from tooling import MathModelQuerer, WikipediaPageFetcher, YoutubeTranscriptFetcher, CodeModelQuerer
|
| 13 |
+
|
| 14 |
+
# (Keep Constants as is)
|
| 15 |
+
# --- Constants ---
|
| 16 |
+
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 17 |
+
|
| 18 |
+
# --- Basic Agent Definition ---
|
| 19 |
+
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
| 20 |
+
import os
|
| 21 |
+
|
| 22 |
+
cache = {}
|
| 23 |
+
|
| 24 |
+
web_search = DuckDuckGoSearchTool()
|
| 25 |
+
python_interpreter = PythonInterpreterTool()
|
| 26 |
+
visit_webpage_tool = VisitWebpageTool()
|
| 27 |
+
wiki_tool = WikipediaPageFetcher()
|
| 28 |
+
yt_transcript_fetcher = YoutubeTranscriptFetcher()
|
| 29 |
+
math_model_querer = MathModelQuerer()
|
| 30 |
+
code_model_querer = CodeModelQuerer()
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def load_cached_answer(question_id: str) -> str:
|
| 34 |
+
if question_id in cache.keys():
|
| 35 |
+
return cache[question_id]
|
| 36 |
+
else:
|
| 37 |
+
return None
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def cache_answer(question_id: str, answer: str):
|
| 41 |
+
cache[question_id] = answer
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
# --- Model Setup ---
|
| 45 |
+
MODEL_NAME = 'Qwen/Qwen2.5-3B-Instruct' # 'meta-llama/Llama-3.2-3B-Instruct'
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
# "Qwen/Qwen2.5-VL-3B-Instruct"#'meta-llama/Llama-2-7b-hf'#'meta-llama/Llama-3.1-8B-Instruct'#'TinyLlama/TinyLlama-1.1B-Chat-v1.0'#'mistralai/Mistral-7B-Instruct-v0.2'#'microsoft/DialoGPT-small'# 'EleutherAI/gpt-neo-2.7B'#'distilbert/distilgpt2'#'deepseek-ai/DeepSeek-R1-Distill-Qwen-7B'#'mistralai/Mistral-7B-Instruct-v0.2'
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def load_model(model_name):
|
| 52 |
+
"""Download and load the model and tokenizer."""
|
| 53 |
+
try:
|
| 54 |
+
print(f"Loading model {MODEL_NAME}...")
|
| 55 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
| 56 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 57 |
+
|
| 58 |
+
if tokenizer.pad_token is None:
|
| 59 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 60 |
+
|
| 61 |
+
print(f"Model {MODEL_NAME} loaded successfully.")
|
| 62 |
+
|
| 63 |
+
transformers_engine = TransformersEngine(pipeline("text-generation", model=model, tokenizer=tokenizer))
|
| 64 |
+
|
| 65 |
+
return transformers_engine, model
|
| 66 |
+
except Exception as e:
|
| 67 |
+
print(f"Error loading model: {e}")
|
| 68 |
+
raise
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
# Load the model and tokenizer locally
|
| 72 |
+
# model, tokenizer = load_model()
|
| 73 |
+
model = HfApiModel() # model_id=MODEL_NAME, max_tokens=512)
|
| 74 |
+
model_id = "reedmayhew/claude-3.7-sonnet-reasoning-gemma3-12B" # "microsoft/phi-2"# not working out of the box"google/gemma-2-2b-it" #toobig"Qwen/Qwen1.5-7B-Chat"#working but stupid: "meta-llama/Llama-3.2-3B-Instruct"
|
| 75 |
+
model = HfApiModel(model_id)
|
| 76 |
+
#from smolagents import TransformersModel
|
| 77 |
+
# model = TransformersModel(
|
| 78 |
+
# model_id=model_id,
|
| 79 |
+
# max_new_tokens=256)
|
| 80 |
+
|
| 81 |
+
# model = HfApiModel()
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
class BasicAgent:
|
| 85 |
+
def __init__(self):
|
| 86 |
+
print("BasicAgent initialized.")
|
| 87 |
+
self.agent = CodeAgent(
|
| 88 |
+
model=model,
|
| 89 |
+
tools=[web_search, python_interpreter, visit_webpage_tool, wiki_tool, code_model_querer, math_model_querer],
|
| 90 |
+
max_steps=3,
|
| 91 |
+
verbosity_level=1,
|
| 92 |
+
grammar=None,
|
| 93 |
+
planning_interval=3,
|
| 94 |
+
add_base_tools=True,
|
| 95 |
+
additional_authorized_imports=['requests', 'wikipedia', 'pandas']
|
| 96 |
+
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
def __call__(self, question: str) -> str:
|
| 100 |
+
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
| 101 |
+
answer = self.agent.run(question)
|
| 102 |
+
return answer
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
| 106 |
+
"""
|
| 107 |
+
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
| 108 |
+
and displays the results.
|
| 109 |
+
"""
|
| 110 |
+
# --- Determine HF Space Runtime URL and Repo URL ---
|
| 111 |
+
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
|
| 112 |
+
|
| 113 |
+
if profile:
|
| 114 |
+
username = f"{profile.username}"
|
| 115 |
+
print(f"User logged in: {username}")
|
| 116 |
+
else:
|
| 117 |
+
print("User not logged in.")
|
| 118 |
+
return "Please Login to Hugging Face with the button.", None
|
| 119 |
+
|
| 120 |
+
api_url = DEFAULT_API_URL
|
| 121 |
+
questions_url = f"{api_url}/questions"
|
| 122 |
+
submit_url = f"{api_url}/submit"
|
| 123 |
+
|
| 124 |
+
# 1. Instantiate Agent ( modify this part to create your agent)
|
| 125 |
+
try:
|
| 126 |
+
agent = BasicAgent()
|
| 127 |
+
except Exception as e:
|
| 128 |
+
print(f"Error instantiating agent: {e}")
|
| 129 |
+
return f"Error initializing agent: {e}", None
|
| 130 |
+
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
| 131 |
+
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
| 132 |
+
print(agent_code)
|
| 133 |
+
|
| 134 |
+
# 2. Fetch Questions
|
| 135 |
+
print(f"Fetching questions from: {questions_url}")
|
| 136 |
+
try:
|
| 137 |
+
response = requests.get(questions_url, timeout=15)
|
| 138 |
+
response.raise_for_status()
|
| 139 |
+
questions_data = response.json()
|
| 140 |
+
if not questions_data:
|
| 141 |
+
print("Fetched questions list is empty.")
|
| 142 |
+
return "Fetched questions list is empty or invalid format.", None
|
| 143 |
+
print(f"Fetched {len(questions_data)} questions.")
|
| 144 |
+
except requests.exceptions.RequestException as e:
|
| 145 |
+
print(f"Error fetching questions: {e}")
|
| 146 |
+
return f"Error fetching questions: {e}", None
|
| 147 |
+
except requests.exceptions.JSONDecodeError as e:
|
| 148 |
+
print(f"Error decoding JSON response from questions endpoint: {e}")
|
| 149 |
+
print(f"Response text: {response.text[:500]}")
|
| 150 |
+
return f"Error decoding server response for questions: {e}", None
|
| 151 |
+
except Exception as e:
|
| 152 |
+
print(f"An unexpected error occurred fetching questions: {e}")
|
| 153 |
+
return f"An unexpected error occurred fetching questions: {e}", None
|
| 154 |
+
|
| 155 |
+
# 3. Run your Agent
|
| 156 |
+
results_log = []
|
| 157 |
+
answers_payload = []
|
| 158 |
+
print(f"Running agent on {len(questions_data)} questions...")
|
| 159 |
+
for item in questions_data[:1]:
|
| 160 |
+
task_id = item.get("task_id")
|
| 161 |
+
question_text = item.get("question")
|
| 162 |
+
if not task_id or question_text is None:
|
| 163 |
+
print(f"Skipping item with missing task_id or question: {item}")
|
| 164 |
+
continue
|
| 165 |
+
try:
|
| 166 |
+
cached = load_cached_answer(task_id)
|
| 167 |
+
if cached:
|
| 168 |
+
submitted_answer = cached
|
| 169 |
+
print(f"Loaded cached answer for task {task_id}")
|
| 170 |
+
else:
|
| 171 |
+
submitted_answer = agent(question_text)
|
| 172 |
+
cache_answer(task_id, submitted_answer)
|
| 173 |
+
print(f"Generated and cached answer for task {task_id}")
|
| 174 |
+
|
| 175 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
| 176 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
| 177 |
+
except Exception as e:
|
| 178 |
+
print(f"Error running agent on task {task_id}: {e}")
|
| 179 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
| 180 |
+
|
| 181 |
+
if not answers_payload:
|
| 182 |
+
print("Agent did not produce any answers to submit.")
|
| 183 |
+
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
| 184 |
+
|
| 185 |
+
# 4. Prepare Submission
|
| 186 |
+
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
| 187 |
+
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
| 188 |
+
print(status_update)
|
| 189 |
+
|
| 190 |
+
# 5. Submit
|
| 191 |
+
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
| 192 |
+
try:
|
| 193 |
+
response = requests.post(submit_url, json=submission_data, timeout=60)
|
| 194 |
+
response.raise_for_status()
|
| 195 |
+
result_data = response.json()
|
| 196 |
+
final_status = (
|
| 197 |
+
f"Submission Successful!\n"
|
| 198 |
+
f"User: {result_data.get('username')}\n"
|
| 199 |
+
f"Overall Score: {result_data.get('score', 'N/A')}% "
|
| 200 |
+
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
| 201 |
+
f"Message: {result_data.get('message', 'No message received.')}"
|
| 202 |
+
)
|
| 203 |
+
print("Submission successful.")
|
| 204 |
+
results_df = pd.DataFrame(results_log)
|
| 205 |
+
return final_status, results_df
|
| 206 |
+
except requests.exceptions.HTTPError as e:
|
| 207 |
+
error_detail = f"Server responded with status {e.response.status_code}."
|
| 208 |
+
try:
|
| 209 |
+
error_json = e.response.json()
|
| 210 |
+
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
| 211 |
+
except requests.exceptions.JSONDecodeError:
|
| 212 |
+
error_detail += f" Response: {e.response.text[:500]}"
|
| 213 |
+
status_message = f"Submission Failed: {error_detail}"
|
| 214 |
+
print(status_message)
|
| 215 |
+
results_df = pd.DataFrame(results_log)
|
| 216 |
+
return status_message, results_df
|
| 217 |
+
except requests.exceptions.Timeout:
|
| 218 |
+
status_message = "Submission Failed: The request timed out."
|
| 219 |
+
print(status_message)
|
| 220 |
+
results_df = pd.DataFrame(results_log)
|
| 221 |
+
return status_message, results_df
|
| 222 |
+
except requests.exceptions.RequestException as e:
|
| 223 |
+
status_message = f"Submission Failed: Network error - {e}"
|
| 224 |
+
print(status_message)
|
| 225 |
+
results_df = pd.DataFrame(results_log)
|
| 226 |
+
return status_message, results_df
|
| 227 |
+
except Exception as e:
|
| 228 |
+
status_message = f"An unexpected error occurred during submission: {e}"
|
| 229 |
+
print(status_message)
|
| 230 |
+
results_df = pd.DataFrame(results_log)
|
| 231 |
+
return status_message, results_df
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
# --- Build Gradio Interface using Blocks ---
|
| 235 |
+
with gr.Blocks() as demo:
|
| 236 |
+
gr.Markdown("# Basic Agent Evaluation Runner")
|
| 237 |
+
gr.Markdown(
|
| 238 |
+
"""
|
| 239 |
+
**Instructions:**
|
| 240 |
+
|
| 241 |
+
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
|
| 242 |
+
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
|
| 243 |
+
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
|
| 244 |
+
|
| 245 |
+
---
|
| 246 |
+
**Disclaimers:**
|
| 247 |
+
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
| 248 |
+
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
| 249 |
+
"""
|
| 250 |
+
)
|
| 251 |
+
|
| 252 |
+
gr.LoginButton()
|
| 253 |
+
|
| 254 |
+
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
| 255 |
+
|
| 256 |
+
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
| 257 |
+
# Removed max_rows=10 from DataFrame constructor
|
| 258 |
+
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
| 259 |
+
|
| 260 |
+
run_button.click(
|
| 261 |
+
fn=run_and_submit_all,
|
| 262 |
+
outputs=[status_output, results_table]
|
| 263 |
+
)
|
| 264 |
+
|
| 265 |
+
if __name__ == "__main__":
|
| 266 |
+
print("\n" + "-" * 30 + " App Starting " + "-" * 30)
|
| 267 |
+
# Check for SPACE_HOST and SPACE_ID at startup for information
|
| 268 |
+
space_host_startup = os.getenv("SPACE_HOST")
|
| 269 |
+
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
| 270 |
+
|
| 271 |
+
if space_host_startup:
|
| 272 |
+
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
| 273 |
+
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
| 274 |
+
else:
|
| 275 |
+
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
| 276 |
+
|
| 277 |
+
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
| 278 |
+
print(f"✅ SPACE_ID found: {space_id_startup}")
|
| 279 |
+
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
| 280 |
+
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
| 281 |
+
else:
|
| 282 |
+
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
| 283 |
+
|
| 284 |
+
print("-" * (60 + len(" App Starting ")) + "\n")
|
| 285 |
+
|
| 286 |
+
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
| 287 |
+
demo.launch(debug=True, share=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
|
@@ -1,7 +1,10 @@
|
|
| 1 |
-
gradio
|
| 2 |
-
requests
|
| 3 |
-
smolagents
|
| 4 |
-
transformers
|
| 5 |
-
wikipedia
|
| 6 |
-
torch
|
| 7 |
-
accelerate
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
requests
|
| 3 |
+
smolagents
|
| 4 |
+
transformers
|
| 5 |
+
wikipedia
|
| 6 |
+
torch
|
| 7 |
+
accelerate
|
| 8 |
+
youtube_transcript_api
|
| 9 |
+
spacy
|
| 10 |
+
https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.7.1/en_core_web_sm-3.7.1-py3-none-any.whl
|
tooling.py
CHANGED
|
@@ -1,65 +1,125 @@
|
|
| 1 |
-
from smolagents import Tool
|
| 2 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
|
| 3 |
-
import torch
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
self.
|
| 25 |
-
print("loaded
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
def forward(self, problem: str) -> str:
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
def
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from smolagents import Tool
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
|
| 3 |
+
import torch
|
| 4 |
+
from wikipedia_utils import *
|
| 5 |
+
from youtube_utils import *
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class MathModelQuerer(Tool):
|
| 9 |
+
name = "math_model"
|
| 10 |
+
description = "Answers advanced math questions using a pretrained math model."
|
| 11 |
+
|
| 12 |
+
inputs = {
|
| 13 |
+
"problem": {
|
| 14 |
+
"type": "string",
|
| 15 |
+
"description": "Math problem to solve.",
|
| 16 |
+
}
|
| 17 |
+
}
|
| 18 |
+
|
| 19 |
+
output_type = "string"
|
| 20 |
+
|
| 21 |
+
def __init__(self, model_name="deepseek-ai/deepseek-math-7b-base"):
|
| 22 |
+
print(f"Loading math model: {model_name}")
|
| 23 |
+
|
| 24 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 25 |
+
print("loaded tokenizer")
|
| 26 |
+
self.model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
|
| 27 |
+
print("loaded auto model")
|
| 28 |
+
|
| 29 |
+
self.model.generation_config = GenerationConfig.from_pretrained(model_name)
|
| 30 |
+
print("loaded coonfig")
|
| 31 |
+
|
| 32 |
+
self.model.generation_config.pad_token_id = self.model.generation_config.eos_token_id
|
| 33 |
+
print("loaded pad token")
|
| 34 |
+
|
| 35 |
+
def forward(self, problem: str) -> str:
|
| 36 |
+
try:
|
| 37 |
+
print(f"[MathModelTool] Question: {problem}")
|
| 38 |
+
|
| 39 |
+
inputs = self.tokenizer(problem, return_tensors="pt")
|
| 40 |
+
outputs = self.model.generate(**inputs, max_new_tokens=100)
|
| 41 |
+
|
| 42 |
+
result = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 43 |
+
|
| 44 |
+
return result
|
| 45 |
+
except:
|
| 46 |
+
return f"Failed using the tool {self.name}"
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
class CodeModelQuerer(Tool):
|
| 50 |
+
name = "code_querer"
|
| 51 |
+
description = "Given a problem description, generates a piece of code used specialized LLM model. Returns output of the model."
|
| 52 |
+
|
| 53 |
+
inputs = {
|
| 54 |
+
"problem": {
|
| 55 |
+
"type": "string",
|
| 56 |
+
"description": "Description of a code sample to be generated",
|
| 57 |
+
}
|
| 58 |
+
}
|
| 59 |
+
|
| 60 |
+
output_type = "string"
|
| 61 |
+
|
| 62 |
+
def __init__(self, model_name="Qwen/Qwen2.5-Coder-32B-Instruct"):
|
| 63 |
+
from smolagents import HfApiModel
|
| 64 |
+
print(f"Loading llm for Code tool: {model_name}")
|
| 65 |
+
self.model = HfApiModel()
|
| 66 |
+
|
| 67 |
+
def forward(self, problem: str) -> str:
|
| 68 |
+
try:
|
| 69 |
+
return self.model.generate(problem, max_new_tokens=512)
|
| 70 |
+
except:
|
| 71 |
+
return f"Failed using the tool {self.name}"
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
class WikipediaPageFetcher(Tool):
|
| 75 |
+
name = "wiki_page_fetcher"
|
| 76 |
+
description = "Searches Wikipedia and provides summary about the queried topic as a string."
|
| 77 |
+
|
| 78 |
+
inputs = {
|
| 79 |
+
"query": {
|
| 80 |
+
"type": "string",
|
| 81 |
+
"description": "Topic of wikipedia search",
|
| 82 |
+
}
|
| 83 |
+
}
|
| 84 |
+
|
| 85 |
+
output_type = "string"
|
| 86 |
+
|
| 87 |
+
def forward(self, query: str) -> str:
|
| 88 |
+
try:
|
| 89 |
+
wiki_query = query(query)
|
| 90 |
+
wiki_page = fetch_wikipedia_page(wiki_query)
|
| 91 |
+
return wiki_page
|
| 92 |
+
except:
|
| 93 |
+
return f"Failed using the tool {self.name}"
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
class YoutubeTranscriptFetcher(Tool):
|
| 97 |
+
name = "youtube_transcript_fetcher"
|
| 98 |
+
description = "Attempts to fetch a youtube transcript in english, if provided with a query \\" \
|
| 99 |
+
" that contains a youtube link with video id. Returns a transcript content as a string. Alternatively, if tool is provided with a\\"" \
|
| 100 |
+
youtube video id, it can fetch the transcript directly."
|
| 101 |
+
|
| 102 |
+
inputs = {
|
| 103 |
+
"query": {
|
| 104 |
+
"type": "string",
|
| 105 |
+
"description": "A query that includes youtube id."
|
| 106 |
+
},
|
| 107 |
+
"video_id" : {
|
| 108 |
+
"type" : "string",
|
| 109 |
+
"description" : "Optional string with video id from youtube.",
|
| 110 |
+
"nullable" : True
|
| 111 |
+
}
|
| 112 |
+
}
|
| 113 |
+
|
| 114 |
+
output_type = "string"
|
| 115 |
+
|
| 116 |
+
def forward(self, query: str, video_id=None) -> str:
|
| 117 |
+
try:
|
| 118 |
+
if video_id is None:
|
| 119 |
+
video_id = get_youtube_video_id(query)
|
| 120 |
+
|
| 121 |
+
fetched_transcript = fetch_transcript_english(video_id)
|
| 122 |
+
|
| 123 |
+
return post_process_transcript(fetched_transcript)
|
| 124 |
+
except:
|
| 125 |
+
return f"Failed using the tool {self.name}"
|
wikipedia_utils.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
import wikipedia
|
| 2 |
import spacy
|
| 3 |
|
|
|
|
| 4 |
def get_wiki_query(query):
|
| 5 |
try:
|
| 6 |
### spacy code
|
|
@@ -11,11 +12,10 @@ def get_wiki_query(query):
|
|
| 11 |
# Parse the sentence
|
| 12 |
doc = nlp(query)
|
| 13 |
|
| 14 |
-
|
| 15 |
# Entity path (people, evenrs, books)
|
| 16 |
entities_components = [entity_substring.text for entity_substring in doc.ents]
|
| 17 |
if len(entities_components) > 0:
|
| 18 |
-
subject_of_the_query= ""
|
| 19 |
for substrings in entities_components:
|
| 20 |
subject_of_the_query = subject_of_the_query + substrings
|
| 21 |
|
|
@@ -34,7 +34,7 @@ def get_wiki_query(query):
|
|
| 34 |
|
| 35 |
|
| 36 |
except Exception as e:
|
| 37 |
-
print("Failed parsing a query subject from query"
|
| 38 |
print(e)
|
| 39 |
|
| 40 |
|
|
@@ -43,18 +43,10 @@ def fetch_wikipedia_page(wiki_query):
|
|
| 43 |
matched_articles = wikipedia.search(wiki_query)
|
| 44 |
if len(matched_articles) > 0:
|
| 45 |
used_article = matched_articles[0]
|
| 46 |
-
page_content = wikipedia.page(used_article,auto_suggest=False)
|
| 47 |
return page_content.content
|
| 48 |
else:
|
| 49 |
return ""
|
| 50 |
except Exception as e:
|
| 51 |
print("Could not fetch the wikipedia article using ", wiki_query)
|
| 52 |
print(e)
|
| 53 |
-
|
| 54 |
-
test_queries = ["How many albums did Amy Winehouse publish?", "Who is Evora Cesaria?","Is cat an animal?"]
|
| 55 |
-
wiki_queries = []
|
| 56 |
-
wiki_pages= []
|
| 57 |
-
for tq in test_queries:
|
| 58 |
-
wiki_queries.append(get_wiki_query(tq))
|
| 59 |
-
for wq in wiki_queries:
|
| 60 |
-
wiki_pages.append(fetch_wikipedia_page(wq))
|
|
|
|
| 1 |
import wikipedia
|
| 2 |
import spacy
|
| 3 |
|
| 4 |
+
|
| 5 |
def get_wiki_query(query):
|
| 6 |
try:
|
| 7 |
### spacy code
|
|
|
|
| 12 |
# Parse the sentence
|
| 13 |
doc = nlp(query)
|
| 14 |
|
|
|
|
| 15 |
# Entity path (people, evenrs, books)
|
| 16 |
entities_components = [entity_substring.text for entity_substring in doc.ents]
|
| 17 |
if len(entities_components) > 0:
|
| 18 |
+
subject_of_the_query = ""
|
| 19 |
for substrings in entities_components:
|
| 20 |
subject_of_the_query = subject_of_the_query + substrings
|
| 21 |
|
|
|
|
| 34 |
|
| 35 |
|
| 36 |
except Exception as e:
|
| 37 |
+
print("Failed parsing a query subject from query", query)
|
| 38 |
print(e)
|
| 39 |
|
| 40 |
|
|
|
|
| 43 |
matched_articles = wikipedia.search(wiki_query)
|
| 44 |
if len(matched_articles) > 0:
|
| 45 |
used_article = matched_articles[0]
|
| 46 |
+
page_content = wikipedia.page(used_article, auto_suggest=False)
|
| 47 |
return page_content.content
|
| 48 |
else:
|
| 49 |
return ""
|
| 50 |
except Exception as e:
|
| 51 |
print("Could not fetch the wikipedia article using ", wiki_query)
|
| 52 |
print(e)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|