Upload tooling.py
Browse files- tooling.py +92 -0
tooling.py
ADDED
|
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from smolagents import DuckDuckGoSearchTool, HfApiModel, load_tool, CodeAgent, PythonInterpreterTool, VisitWebpageTool, \
|
| 2 |
+
Tool
|
| 3 |
+
import hashlib
|
| 4 |
+
import json
|
| 5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 6 |
+
import os
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class ModelMathTool(Tool):
|
| 10 |
+
name = "math_model"
|
| 11 |
+
description = "Answers advanced math questions using a pretrained math model."
|
| 12 |
+
|
| 13 |
+
inputs = {
|
| 14 |
+
"problem": {
|
| 15 |
+
"type": "string",
|
| 16 |
+
"description": "Math problem to solve.",
|
| 17 |
+
}
|
| 18 |
+
}
|
| 19 |
+
|
| 20 |
+
output_type = "string"
|
| 21 |
+
|
| 22 |
+
def __init__(self, model_id="Qwen/Qwen2.5-Math-7B"):
|
| 23 |
+
print(f"Loading math model: {model_id}")
|
| 24 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
| 25 |
+
self.model = HfApiModel(model_id=model_id, max_tokens=512)
|
| 26 |
+
|
| 27 |
+
def forward(self, problem: str) -> str:
|
| 28 |
+
print(f"[MathModelTool] Question: {problem}")
|
| 29 |
+
response = self.model.__call__(problem)
|
| 30 |
+
return response
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
# (Keep Constants as is)
|
| 34 |
+
# --- Constants ---
|
| 35 |
+
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 36 |
+
|
| 37 |
+
web_search = DuckDuckGoSearchTool()
|
| 38 |
+
python_interpreter = PythonInterpreterTool()
|
| 39 |
+
visit_webpage_tool = VisitWebpageTool()
|
| 40 |
+
model_math_tool = ModelMathTool()
|
| 41 |
+
|
| 42 |
+
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
|
| 43 |
+
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud'
|
| 44 |
+
|
| 45 |
+
model = HfApiModel(model_id="HuggingFaceH4/zephyr-7b-beta", max_tokens=512, token=tok)
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def get_cache_key(question: str) -> str:
|
| 49 |
+
return hashlib.sha256(question.encode()).hexdigest()
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def load_cached_answer(question: str) -> str | None:
|
| 53 |
+
key = get_cache_key(question)
|
| 54 |
+
path = f"cache/{key}.json"
|
| 55 |
+
if os.path.exists(path):
|
| 56 |
+
with open(path, "r") as f:
|
| 57 |
+
data = json.load(f)
|
| 58 |
+
return data.get("answer")
|
| 59 |
+
return None
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def cache_answer(question: str, answer: str):
|
| 63 |
+
key = get_cache_key(question)
|
| 64 |
+
path = f"cache/{key}.json"
|
| 65 |
+
with open(path, "w") as f:
|
| 66 |
+
json.dump({"question": question, "answer": answer}, f)
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
class BasicAgent:
|
| 70 |
+
def __init__(self):
|
| 71 |
+
print("BasicAgent initialized.")
|
| 72 |
+
self.agent = CodeAgent(
|
| 73 |
+
model=model,
|
| 74 |
+
tools=[model_math_tool],
|
| 75 |
+
max_steps=1,
|
| 76 |
+
verbosity_level=0,
|
| 77 |
+
grammar=None,
|
| 78 |
+
planning_interval=3,
|
| 79 |
+
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
def __call__(self, question: str) -> str:
|
| 83 |
+
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
| 84 |
+
answer = self.agent.run(question)
|
| 85 |
+
return answer
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
agent = BasicAgent()
|
| 90 |
+
|
| 91 |
+
response = agent.__call__(question="How much is 2*2?")
|
| 92 |
+
print(response)
|