AI_Detector / app.py
mahmoudsaber0's picture
Update app.py
8edaf0f verified
import os
import re
import torch
import logging
import gc
import sys
import pwd # Added for monkey patch
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing import Dict, List, Optional
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from tokenizers.normalizers import Sequence, Replace, Strip
from tokenizers import Regex
from huggingface_hub import hf_hub_download # Added for reliable HF downloads
# =====================================================
# 🛠️ Monkey Patch for Docker/Container UID Issue
# =====================================================
# Fix for 'getpwuid(): uid not found: 1000' in containerized environments
def patched_getpwuid(uid_num):
try:
return original_getpwuid(uid_num)
except KeyError:
if uid_num == os.getuid():
# Create fake user entry
return pwd.struct_pwent(
name='dockeruser',
passwd='x',
uid=uid_num,
gid=os.getgid(),
gecos='Docker User',
dir='/tmp',
shell='/bin/sh'
)
raise
original_getpwuid = pwd.getpwuid
pwd.getpwuid = patched_getpwuid
# Set fallback env vars to avoid user-dependent paths
os.environ.setdefault('HOME', '/tmp')
os.environ.setdefault('USER', 'dockeruser')
# =====================================================
# 🔧 تكوين البيئة والإعدادات
# =====================================================
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# إعدادات الذاكرة والكاش
CACHE_DIR = "/tmp/huggingface_cache"
os.makedirs(CACHE_DIR, exist_ok=True)
# تكوين متغيرات البيئة لـ Hugging Face
os.environ.update({
"HF_HOME": CACHE_DIR,
"TRANSFORMERS_CACHE": CACHE_DIR,
"HF_DATASETS_CACHE": CACHE_DIR,
"HUGGINGFACE_HUB_CACHE": CACHE_DIR,
"TORCH_HOME": CACHE_DIR,
"TOKENIZERS_PARALLELISM": "false", # منع مشاكل threading
"TRANSFORMERS_OFFLINE": "0", # السماح بالتحميل من الإنترنت
})
# إعدادات PyTorch للذاكرة
if torch.cuda.is_available():
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:128'
torch.backends.cudnn.benchmark = True
# =====================================================
# 🚀 تحديد الجهاز (GPU أو CPU)
# =====================================================
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
logger.info(f"🖥️ Using device: {device}")
if torch.cuda.is_available():
logger.info(f"🎮 CUDA Device: {torch.cuda.get_device_name(0)}")
logger.info(f"💾 CUDA Memory: {torch.cuda.get_device_properties(0).total_memory / 1024**3:.2f} GB")
# =====================================================
# 📊 خريطة الموديلات
# =====================================================
label_mapping = {
0: '13B', 1: '30B', 2: '65B', 3: '7B', 4: 'GLM130B', 5: 'bloom_7b',
6: 'bloomz', 7: 'cohere', 8: 'davinci', 9: 'dolly', 10: 'dolly-v2-12b',
11: 'flan_t5_base', 12: 'flan_t5_large', 13: 'flan_t5_small',
14: 'flan_t5_xl', 15: 'flan_t5_xxl', 16: 'gemma-7b-it', 17: 'gemma2-9b-it',
18: 'gpt-3.5-turbo', 19: 'gpt-35', 20: 'gpt4', 21: 'gpt4o',
22: 'gpt_j', 23: 'gpt_neox', 24: 'human', 25: 'llama3-70b', 26: 'llama3-8b',
27: 'mixtral-8x7b', 28: 'opt_1.3b', 29: 'opt_125m', 30: 'opt_13b',
31: 'opt_2.7b', 32: 'opt_30b', 33: 'opt_350m', 34: 'opt_6.7b',
35: 'opt_iml_30b', 36: 'opt_iml_max_1.3b', 37: 't0_11b', 38: 't0_3b',
39: 'text-davinci-002', 40: 'text-davinci-003'
}
# =====================================================
# 🤖 Model Manager - إدارة الموديلات
# =====================================================
class ModelManager:
def __init__(self):
self.tokenizer = None
self.models = []
self.models_loaded = False
self.model_urls = [
"https://huggingface.co/mihalykiss/modernbert_2/resolve/main/Model_groups_3class_seed12",
"https://huggingface.co/mihalykiss/modernbert_2/resolve/main/Model_groups_3class_seed22"
]
self.base_model_id = "answerdotai/ModernBERT-base" # Primary
self.fallback_model_id = "bert-base-uncased" # Fallback if ModernBERT fails
self.using_fallback = False
def load_tokenizer(self):
"""تحميل الـ Tokenizer مع fallback"""
try:
logger.info(f"📝 Loading tokenizer from {self.base_model_id}...")
self.tokenizer = AutoTokenizer.from_pretrained(
self.base_model_id,
cache_dir=CACHE_DIR,
use_fast=True,
trust_remote_code=False
)
logger.info("✅ Primary tokenizer loaded successfully")
except Exception as e:
logger.warning(f"⚠️ Failed to load primary tokenizer: {e}")
try:
logger.info(f"🔄 Falling back to {self.fallback_model_id}...")
self.tokenizer = AutoTokenizer.from_pretrained(
self.fallback_model_id,
cache_dir=CACHE_DIR,
use_fast=True,
trust_remote_code=False
)
self.using_fallback = True
logger.info("✅ Fallback tokenizer loaded successfully")
except Exception as fallback_e:
logger.error(f"❌ Failed to load fallback tokenizer: {fallback_e}")
return False
# إعداد معالج النصوص
try:
newline_to_space = Replace(Regex(r'\s*\n\s*'), " ")
join_hyphen_break = Replace(Regex(r'(\w+)[--]\s*\n\s*(\w+)'), r"\1\2")
self.tokenizer.backend_tokenizer.normalizer = Sequence([
self.tokenizer.backend_tokenizer.normalizer,
join_hyphen_break,
newline_to_space,
Strip()
])
except Exception as e:
logger.warning(f"⚠️ Could not set custom normalizer: {e}")
return True
def load_single_model(self, model_url=None, model_path=None, model_name="Model"):
"""تحميل موديل واحد مع fallback ومعالجة شاملة للأخطاء"""
base_model = None
try:
logger.info(f"🤖 Loading base {model_name} from {self.base_model_id}...")
# محاولة تحميل الموديل الأساسي الرئيسي
base_model = AutoModelForSequenceClassification.from_pretrained(
self.base_model_id,
num_labels=41,
cache_dir=CACHE_DIR,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
low_cpu_mem_usage=True,
trust_remote_code=False
)
logger.info("✅ Primary base model loaded")
except Exception as e:
logger.warning(f"⚠️ Failed to load primary base model: {e}")
try:
logger.info(f"🔄 Falling back to {self.fallback_model_id}...")
base_model = AutoModelForSequenceClassification.from_pretrained(
self.fallback_model_id,
num_labels=41,
cache_dir=CACHE_DIR,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
low_cpu_mem_usage=True,
trust_remote_code=False
)
self.using_fallback = True
logger.info("✅ Fallback base model loaded (note: weights may not be compatible)")
except Exception as fallback_e:
logger.error(f"❌ Failed to load fallback base model: {fallback_e}")
return None
# محاولة تحميل الأوزان (فقط إذا لم نستخدم fallback، أو إذا كانت متوافقة)
try:
if model_path and os.path.exists(model_path):
logger.info(f"📁 Loading from local file: {model_path}")
state_dict = torch.load(model_path, map_location=device, weights_only=True)
base_model.load_state_dict(state_dict, strict=False)
elif model_url:
# استخدام hf_hub_download بدلاً من torch.hub للـ HF repos
logger.info(f"🌐 Downloading weights from HF repo...")
repo_id = "mihalykiss/modernbert_2"
filename = model_url.split("/")[-1]
local_path = hf_hub_download(
repo_id=repo_id,
filename=filename,
cache_dir=CACHE_DIR
)
logger.info(f"✅ Downloaded to {local_path}")
state_dict = torch.load(local_path, map_location=device, weights_only=True)
base_model.load_state_dict(state_dict, strict=False)
logger.info(f"✅ {model_name} weights loaded successfully")
except Exception as e:
logger.warning(f"⚠️ Could not load custom weights for {model_name}: {e}")
logger.info("📌 Using base model without fine-tuned weights")
# نقل للجهاز وضبط الوضع
try:
base_model = base_model.to(device)
base_model.eval()
logger.info(f"✅ {model_name} moved to {device} and set to eval mode")
return base_model
except Exception as e:
logger.error(f"❌ Failed to prepare {model_name}: {e}")
return None
def load_models(self):
"""تحميل جميع الموديلات"""
if self.models_loaded:
return True
try:
# تحميل tokenizer
if not self.load_tokenizer():
return False
# تحميل كل موديل
for i, model_url in enumerate(self.model_urls):
model = self.load_single_model(
model_url=model_url,
model_name=f"Model {i+1}"
)
if model is None:
logger.warning(f"⚠️ Failed to load model {i+1}")
continue
self.models.append(model)
if len(self.models) == 0:
logger.error("❌ No models loaded successfully")
return False
self.models_loaded = True
logger.info(f"✅ Successfully loaded {len(self.models)} model(s)")
return True
except Exception as e:
logger.error(f"❌ Model loading error: {e}", exc_info=True)
return False
def classify_text(self, text: str, max_length: int = 512) -> Dict:
"""تصنيف النص"""
if not self.models_loaded or not self.tokenizer:
raise RuntimeError("Models or tokenizer not loaded")
try:
# Tokenization
inputs = self.tokenizer(
text,
return_tensors="pt",
truncation=True,
max_length=max_length,
padding=True
).to(device)
# التنبؤ باستخدام جميع الموديلات
all_logits = []
with torch.no_grad():
for model in self.models:
outputs = model(**inputs)
all_logits.append(outputs.logits)
# حساب المتوسط
avg_logits = torch.mean(torch.stack(all_logits), dim=0)
probabilities = torch.nn.functional.softmax(avg_logits, dim=-1)
# الحصول على أعلى التنبؤات
top_probs, top_indices = torch.topk(probabilities[0], k=5)
# حساب احتمالات AI vs Human
ai_prob = 1.0 - probabilities[0][24].item() # 24 = human
human_prob = probabilities[0][24].item()
# الموديل المتوقع
predicted_idx = top_indices[0].item()
predicted_model = label_mapping.get(predicted_idx, "unknown")
# Top 5 predictions
top_5 = [
{
"model": label_mapping.get(idx.item(), "unknown"),
"probability": prob.item()
}
for prob, idx in zip(top_probs, top_indices)
]
return {
"ai_percentage": round(ai_prob * 100, 2),
"human_percentage": round(human_prob * 100, 2),
"predicted_model": predicted_model,
"top_5_predictions": top_5,
"models_used": len(self.models),
"using_fallback": self.using_fallback
}
except Exception as e:
logger.error(f"Classification error: {e}", exc_info=True)
raise
# =====================================================
# 🆕 ADVANCED ACCURACY FEATURES
# =====================================================
def calculate_perplexity_score(text: str) -> float:
"""
Calculate text perplexity (complexity/predictability)
AI text tends to have lower perplexity (more predictable)
Human text has higher perplexity (more varied/unpredictable)
"""
words = text.split()
if len(words) < 10:
return 0.0
# Calculate word length variance
word_lengths = [len(w) for w in words]
avg_length = sum(word_lengths) / len(word_lengths)
variance = sum((l - avg_length) ** 2 for l in word_lengths) / len(word_lengths)
# Calculate unique word ratio
unique_ratio = len(set(words)) / len(words)
# Combine metrics (normalized 0-1, higher = more human-like)
perplexity = (variance / 20) * 0.5 + unique_ratio * 0.5
return min(max(perplexity, 0), 1)
def analyze_sentence_structure(text: str) -> Dict:
"""
Analyze sentence patterns
AI tends to have:
- More uniform sentence lengths
- Consistent punctuation patterns
- Regular structure
"""
sentences = re.split(r'[.!?]+', text)
sentences = [s.strip() for s in sentences if s.strip()]
if len(sentences) < 2:
return {"uniformity": 0.5, "variance": 0.5}
# Sentence lengths
lengths = [len(s.split()) for s in sentences]
avg_length = sum(lengths) / len(lengths)
# Calculate variance (low variance = more uniform = AI-like)
variance = sum((l - avg_length) ** 2 for l in lengths) / len(lengths)
uniformity = 1 / (1 + variance / 10) # Normalize
return {
"uniformity": round(uniformity, 3),
"variance": round(variance, 2),
"avg_sentence_length": round(avg_length, 1),
"sentence_count": len(sentences)
}
def detect_repetition_patterns(text: str) -> Dict:
"""
Detect repetitive patterns common in AI text
AI often repeats:
- Similar phrases
- Sentence structures
- Transition words
"""
words = text.lower().split()
# Check for bigram repetition
bigrams = [f"{words[i]} {words[i+1]}" for i in range(len(words)-1)]
bigram_repetition = 1 - (len(set(bigrams)) / len(bigrams)) if bigrams else 0
# Check for trigram repetition
trigrams = [f"{words[i]} {words[i+1]} {words[i+2]}" for i in range(len(words)-2)]
trigram_repetition = 1 - (len(set(trigrams)) / len(trigrams)) if trigrams else 0
# Common AI transition phrases
ai_phrases = [
'furthermore', 'moreover', 'additionally', 'consequently',
'in conclusion', 'to summarize', 'it is important to note',
'it should be noted', 'in other words', 'as a result'
]
ai_phrase_count = sum(1 for phrase in ai_phrases if phrase in text.lower())
ai_phrase_density = ai_phrase_count / max(len(words) / 100, 1) # per 100 words
return {
"bigram_repetition": round(bigram_repetition, 3),
"trigram_repetition": round(trigram_repetition, 3),
"ai_phrase_density": round(ai_phrase_density, 2),
"ai_phrase_count": ai_phrase_count
}
def analyze_vocabulary_richness(text: str) -> Dict:
"""
Analyze vocabulary complexity
AI tends to:
- Use more formal vocabulary
- Less slang/informal words
- More technical terms
"""
words = [w.lower() for w in re.findall(r'\b[a-z]+\b', text.lower())]
if len(words) < 10:
return {"richness": 0.5, "formality": 0.5}
# Type-token ratio (vocabulary diversity)
ttr = len(set(words)) / len(words)
# Informal markers (human-like)
informal_markers = [
'lol', 'omg', 'btw', 'tbh', 'imo', 'gonna', 'wanna', 'gotta',
'yeah', 'nah', 'yep', 'nope', 'kinda', 'sorta', 'dunno'
]
informal_count = sum(1 for marker in informal_markers if marker in words)
# Formal markers (AI-like)
formal_markers = [
'furthermore', 'nevertheless', 'consequently', 'substantially',
'primarily', 'significantly', 'comprehensive', 'fundamental',
'demonstrate', 'facilitate', 'optimize', 'leverage'
]
formal_count = sum(1 for marker in formal_markers if marker in words)
# Formality score (0 = informal/human, 1 = formal/AI)
formality = formal_count / max(formal_count + informal_count, 1)
return {
"type_token_ratio": round(ttr, 3),
"informal_markers": informal_count,
"formal_markers": formal_count,
"formality_score": round(formality, 3),
"unique_words": len(set(words))
}
def detect_human_errors(text: str) -> Dict:
"""
Detect common human typing patterns
Humans tend to have:
- Typos and spelling errors
- Inconsistent punctuation
- Emotional expressions
"""
# Emotional markers (very human)
emotions = ['!', '?', '!!', '???', '...', 'haha', 'lmao', 'wow']
emotion_count = sum(text.lower().count(e) for e in emotions)
# Repeated punctuation (human typo pattern)
repeated_punct = len(re.findall(r'([!?.])\1+', text))
# ALL CAPS words (emotional emphasis, human-like)
caps_words = len(re.findall(r'\b[A-Z]{2,}\b', text))
# Inconsistent spacing (human error)
spacing_issues = len(re.findall(r'\s{2,}|[a-z][A-Z]', text))
return {
"emotion_markers": emotion_count,
"repeated_punctuation": repeated_punct,
"caps_emphasis": caps_words,
"spacing_inconsistencies": spacing_issues,
"human_error_score": round((emotion_count + repeated_punct + caps_words) / max(len(text.split()) / 50, 1), 2)
}
def calculate_burstiness(text: str) -> float:
"""
Calculate burstiness (variation in sentence/word patterns)
AI: Low burstiness (consistent)
Human: High burstiness (varied, unpredictable)
"""
sentences = re.split(r'[.!?]+', text)
sentences = [s.strip() for s in sentences if s.strip()]
if len(sentences) < 3:
return 0.5
lengths = [len(s.split()) for s in sentences]
# Calculate burstiness score
mean_length = sum(lengths) / len(lengths)
variance = sum((l - mean_length) ** 2 for l in lengths) / len(lengths)
# Higher variance = more bursty = more human
burstiness = min(variance / 50, 1.0) # Normalize
return round(burstiness, 3)
def advanced_linguistic_analysis(text: str) -> Dict:
"""
Comprehensive linguistic analysis combining all methods
Returns a confidence boost/penalty based on linguistic features
"""
try:
perplexity = calculate_perplexity_score(text)
structure = analyze_sentence_structure(text)
repetition = detect_repetition_patterns(text)
vocabulary = analyze_vocabulary_richness(text)
human_errors = detect_human_errors(text)
burstiness = calculate_burstiness(text)
# Calculate AI likelihood from linguistic features
# Higher score = more AI-like
ai_indicators = [
structure["uniformity"], # High uniformity = AI
repetition["bigram_repetition"] * 2, # High repetition = AI
repetition["ai_phrase_density"] / 5, # Many AI phrases = AI
vocabulary["formality_score"], # High formality = AI
(1 - burstiness), # Low burstiness = AI
(1 - perplexity), # Low perplexity = AI
]
# Calculate human likelihood from linguistic features
human_indicators = [
human_errors["human_error_score"], # Errors = human
vocabulary["informal_markers"] / 10, # Informal = human
burstiness, # High burstiness = human
perplexity, # High perplexity = human
]
linguistic_ai_score = sum(ai_indicators) / len(ai_indicators)
linguistic_human_score = sum(human_indicators) / len(human_indicators)
# Normalize to 0-100 scale
linguistic_ai_percentage = round(linguistic_ai_score * 100, 2)
linguistic_human_percentage = round(linguistic_human_score * 100, 2)
return {
"linguistic_features": {
"perplexity": perplexity,
"sentence_structure": structure,
"repetition_patterns": repetition,
"vocabulary_analysis": vocabulary,
"human_error_patterns": human_errors,
"burstiness": burstiness
},
"linguistic_ai_score": linguistic_ai_percentage,
"linguistic_human_score": linguistic_human_percentage,
"confidence_modifier": {
"ai_indicators_strength": round(linguistic_ai_score, 3),
"human_indicators_strength": round(linguistic_human_score, 3),
"combined_confidence": round(abs(linguistic_ai_score - linguistic_human_score), 3)
}
}
except Exception as e:
logger.warning(f"Advanced linguistic analysis failed: {e}")
return {
"linguistic_features": {},
"linguistic_ai_score": 50,
"linguistic_human_score": 50,
"confidence_modifier": {"error": str(e)}
}
# =====================================================
# 🆕 ADVANCED ACCURACY FEATURES
# =====================================================
def clean_content_for_analysis(text: str, min_line_length: int = 30) -> str:
"""
Clean content by removing short lines (headlines, etc.)
Args:
text: Original text
min_line_length: Minimum character length for a line to be kept (default: 30)
Returns:
Cleaned text with only substantial content lines
"""
lines = text.split('\n')
cleaned_lines = []
for line in lines:
stripped = line.strip()
# Keep lines that are longer than min_line_length
if len(stripped) >= min_line_length:
cleaned_lines.append(stripped)
return ' '.join(cleaned_lines)
def split_content_in_half(text: str) -> tuple:
"""
Split cleaned content into two halves
Args:
text: Cleaned text
Returns:
Tuple of (first_half, second_half)
"""
words = text.split()
mid_point = len(words) // 2
first_half = ' '.join(words[:mid_point])
second_half = ' '.join(words[mid_point:])
return first_half, second_half
def analyze_content_halves(model_manager, text: str, overall_result: Dict = None) -> Dict:
"""
Analyze text by splitting it into two halves after cleaning.
Uses BOTH models for ensemble predictions on each half for improved accuracy
PLUS advanced linguistic analysis for enhanced confidence.
"""
try:
logger.info("🔬 Running advanced linguistic analysis...")
linguistic_analysis = advanced_linguistic_analysis(text)
cleaned_text = clean_content_for_analysis(text)
if not cleaned_text or len(cleaned_text.split()) < 10:
return {
"halves_analysis_available": False,
"reason": "Content too short after cleaning",
"linguistic_analysis": linguistic_analysis
}
# Split text into halves
first_half, second_half = split_content_in_half(cleaned_text)
# Linguistic analysis for each half
first_half_linguistic = advanced_linguistic_analysis(first_half)
second_half_linguistic = advanced_linguistic_analysis(second_half)
# Ensemble model predictions
first_half_result = model_manager.classify_text(first_half)
second_half_result = model_manager.classify_text(second_half)
first_ai = first_half_result["ai_percentage"]
second_ai = second_half_result["ai_percentage"]
first_model = first_half_result["predicted_model"]
second_model = second_half_result["predicted_model"]
first_top5 = first_half_result.get("top_5_predictions", [])
second_top5 = second_half_result.get("top_5_predictions", [])
first_half_words = len(first_half.split())
second_half_words = len(second_half.split())
# Stats
avg_halves_ai_score = (first_ai + second_ai) / 2
variance_between_halves = abs(first_ai - second_ai)
overall_ai_prob = (
overall_result["ai_percentage"] / 100
if overall_result
else avg_halves_ai_score / 100
)
models_agree = first_model == second_model
models_used = first_half_result.get("models_used", 1)
ensemble_confidence_boost = "High" if models_used > 1 else "Low"
# Linguistic AI/Human scores
ling_ai = linguistic_analysis.get("linguistic_ai_score", 50)
ling_human = linguistic_analysis.get("linguistic_human_score", 50)
# Some fallback linguistic details
burstiness = linguistic_analysis.get("burstiness", 0.5)
formality_score = linguistic_analysis.get("formality_score", 0.5)
human_error_score = linguistic_analysis.get("human_error_score", 0.5)
emotion_markers = linguistic_analysis.get("emotion_markers", 0)
# Weighted average between model and linguistic results
combined_avg_ai = (avg_halves_ai_score * 0.7) + (ling_ai * 0.3)
model_ling_agreement = abs(avg_halves_ai_score - ling_ai) < 20
# ----- Final Decision Logic -----
verdict = "UNCERTAIN"
confidence = "Low"
accuracy_percentage = 60
reasoning = ""
# HUMAN
if first_ai < 50 and second_ai < 50 and second_model.lower() == "human":
verdict = "HUMAN"
if ling_human > ling_ai:
confidence = "Very High"
accuracy_percentage = 95
elif variance_between_halves < 15:
confidence = "High"
accuracy_percentage = 85
else:
confidence = "Medium"
accuracy_percentage = 75
reasoning = (
f"Both halves scored below 50% AI probability (First: {first_ai}%, Second: {second_ai}%). "
f"Linguistic analysis confirms with {ling_human:.1f}% human indicators. "
f"The text shows {emotion_markers} emotional markers and a human error score of {human_error_score:.2f}. "
f"Variance between halves is {variance_between_halves:.2f}%, indicating consistent human patterns. "
)
# AI
elif first_ai > 50 and second_ai > 50 and second_model.lower() != "human":
verdict = "AI"
if first_ai > 80 and second_ai > 80 and model_ling_agreement:
confidence = "Very High"
accuracy_percentage = 98
elif first_ai > 70 and second_ai > 70:
confidence = "High"
accuracy_percentage = 90
else:
confidence = "Medium"
accuracy_percentage = 80
reasoning = (
f"Both halves scored above 50% AI probability (First: {first_ai}%, Second: {second_ai}%). "
f"Linguistic analysis confirms with {ling_ai:.1f}% AI indicators. "
f"Detected high formality score ({formality_score:.2f}) and low burstiness ({burstiness:.2f}), typical of AI generation. "
f"Variance between halves: {variance_between_halves:.2f}%. "
f"Models {'agree' if models_agree else 'disagree'} across halves."
)
# MIXED
elif (first_ai > 50 and second_ai < 50) or (first_ai < 50 and second_ai > 50):
verdict = "MIXED"
confidence = "Medium" if variance_between_halves > 30 else "Low"
accuracy_percentage = 75
reasoning = (
f"Mixed signals detected. First half: {first_ai}% AI ({first_model}), "
f"Second half: {second_ai}% AI ({second_model}). "
f"Linguistic AI score: {ling_ai:.1f}%. "
f"Variance between halves ({variance_between_halves:.2f}%) supports mixed authorship."
)
# Borderline
else:
if second_model.lower() == "human" or ling_human > ling_ai:
verdict = "LIKELY_HUMAN"
confidence = "Medium"
accuracy_percentage = 70
else:
verdict = "LIKELY_AI"
confidence = "Medium"
accuracy_percentage = 70
reasoning = (
f"Borderline case: scores near 50%. "
f"Linguistic analysis leans toward {'human' if ling_human > ling_ai else 'AI'} writing. "
f"Variance: {variance_between_halves:.2f}%."
)
# ----- Final Output -----
final_decision = {
"verdict": verdict,
"confidence": confidence,
"accuracy_percentage": accuracy_percentage,
"reasoning": reasoning,
"supporting_data": {
"overall_ai_prob": round(overall_ai_prob, 3),
"avg_halves_ai_score": round(avg_halves_ai_score / 100, 3),
"variance_between_halves": round(variance_between_halves, 2),
"first_half_model": first_model,
"second_half_model": second_model,
"models_agree": models_agree,
"ensemble_models_used": models_used,
"ensemble_confidence": ensemble_confidence_boost,
"linguistic_ai_score": ling_ai,
"linguistic_human_score": ling_human,
"model_linguistic_agreement": model_ling_agreement,
"combined_ai_score": round(combined_avg_ai, 2),
},
}
return {
"halves_analysis_available": True,
"cleaned_content": {
"total_words": len(cleaned_text.split()),
"first_half_words": first_half_words,
"second_half_words": second_half_words,
},
"first_half": {
"ai_percentage": first_ai,
"human_percentage": first_half_result["human_percentage"],
"predicted_model": first_model,
"word_count": first_half_words,
"preview": first_half[:200] + "..." if len(first_half) > 200 else first_half,
"top_5_predictions": first_top5,
"models_used": models_used,
"linguistic_analysis": first_half_linguistic,
},
"second_half": {
"ai_percentage": second_ai,
"human_percentage": second_half_result["human_percentage"],
"predicted_model": second_model,
"word_count": second_half_words,
"preview": second_half[:200] + "..." if len(second_half) > 200 else second_half,
"top_5_predictions": second_top5,
"models_used": models_used,
"linguistic_analysis": second_half_linguistic,
},
"final_decision": final_decision,
"overall_linguistic_analysis": linguistic_analysis,
}
except Exception as e:
logger.error(f"Error in halves analysis: {e}", exc_info=True)
return {
"halves_analysis_available": False,
"error": str(e)
}
# =====================================================
# 📝 Pydantic Models
# =====================================================
class TextInput(BaseModel):
text: str
analyze_paragraphs: bool = False
class SimpleTextInput(BaseModel):
text: str
class DetectionResult(BaseModel):
success: bool
code: int
message: str
data: Dict
# =====================================================
# 🔧 مساعدات
# =====================================================
def split_into_paragraphs(text: str, min_length: int = 100) -> List[str]:
"""تقسيم النص إلى فقرات"""
paragraphs = re.split(r'\n\s*\n', text)
return [p.strip() for p in paragraphs if len(p.strip()) >= min_length]
# =====================================================
# 🌐 FastAPI Application
# =====================================================
app = FastAPI(
title="ModernBERT AI Text Detector API",
description="API for detecting AI-generated text using ModernBERT",
version="2.0.0"
)
# CORS
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Model Manager Instance
model_manager = ModelManager()
# =====================================================
# 🚀 Startup Event
# =====================================================
@app.on_event("startup")
async def startup_event():
"""تحميل الموديلات عند بدء التطبيق"""
logger.info("🚀 Starting application...")
logger.info("📦 Loading models...")
success = model_manager.load_models()
if success:
logger.info("✅ Application ready! (Fallback mode: %s)", model_manager.using_fallback)
else:
logger.error("⚠️ Failed to load models - API will return errors")
logger.info("💡 Tip: Ensure 'transformers>=4.45.0' and 'huggingface_hub' are installed. Run: pip install --upgrade transformers huggingface_hub")
@app.get("/")
async def root():
"""الصفحة الرئيسية"""
return {
"message": "ModernBERT AI Text Detector API",
"status": "online" if model_manager.models_loaded else "initializing",
"models_loaded": len(model_manager.models),
"using_fallback": model_manager.using_fallback,
"device": str(device),
"endpoints": {
"analyze": "/analyze",
"simple": "/analyze-simple",
"health": "/health",
"docs": "/docs"
}
}
@app.get("/health")
async def health_check():
"""فحص صحة الخدمة"""
memory_info = {}
if torch.cuda.is_available():
memory_info = {
"gpu_allocated_gb": round(torch.cuda.memory_allocated() / 1024**3, 2),
"gpu_reserved_gb": round(torch.cuda.memory_reserved() / 1024**3, 2)
}
return {
"status": "healthy" if model_manager.models_loaded else "unhealthy",
"models_loaded": len(model_manager.models),
"using_fallback": model_manager.using_fallback,
"device": str(device),
"cuda_available": torch.cuda.is_available(),
"memory_info": memory_info
}
@app.post("/analyze", response_model=DetectionResult)
async def analyze_text(data: TextInput):
"""
تحليل النص للكشف عن AI
يحاكي نفس وظيفة Gradio classify_text
"""
try:
# التحقق من النص
text = data.text.strip()
if not text:
return DetectionResult(
success=False,
code=400,
message="Empty input text",
data={}
)
# التأكد من تحميل الموديلات
if not model_manager.models_loaded:
# محاولة تحميل الموديلات
if not model_manager.load_models():
return DetectionResult(
success=False,
code=503,
message="Models not available. Check logs for details.",
data={}
)
# حساب عدد الكلمات
total_words = len(text.split())
# التحليل الأساسي
result = model_manager.classify_text(text)
# النتائج الأساسية
ai_percentage = result["ai_percentage"]
human_percentage = result["human_percentage"]
ai_words = int(total_words * (ai_percentage / 100))
# تحليل الفقرات إذا طُلب ذلك
paragraphs_analysis = []
if data.analyze_paragraphs and ai_percentage > 50:
paragraphs = split_into_paragraphs(text)
recalc_ai_words = 0
recalc_total_words = 0
for para in paragraphs[:10]: # حد أقصى 10 فقرات
if para.strip():
try:
para_result = model_manager.classify_text(para)
para_words = len(para.split())
recalc_total_words += para_words
recalc_ai_words += para_words * (para_result["ai_percentage"] / 100)
paragraphs_analysis.append({
"paragraph": para[:200] + "..." if len(para) > 200 else para,
"ai_generated_score": para_result["ai_percentage"] / 100,
"human_written_score": para_result["human_percentage"] / 100,
"predicted_model": para_result["predicted_model"]
})
except Exception as e:
logger.warning(f"Failed to analyze paragraph: {e}")
# إعادة حساب النسب بناءً على الفقرات
if recalc_total_words > 0:
ai_percentage = round((recalc_ai_words / recalc_total_words) * 100, 2)
human_percentage = round(100 - ai_percentage, 2)
ai_words = int(recalc_ai_words)
# 🆕 NEW FEATURE: Analyze content by halves (pass overall result for variance calculation)
halves_analysis = analyze_content_halves(model_manager, text, result)
# إنشاء رسالة التغذية الراجعة
if ai_percentage > 50:
feedback = "Most of Your Text is AI/GPT Generated"
else:
feedback = "Most of Your Text Appears Human-Written"
# إرجاع النتائج بنفس تنسيق الكود الأصلي + إضافة تحليل النصفين
return DetectionResult(
success=True,
code=200,
message="analysis completed",
data={
"fakePercentage": ai_percentage,
"isHuman": human_percentage,
"textWords": total_words,
"aiWords": ai_words,
"paragraphs": paragraphs_analysis,
"predicted_model": result["predicted_model"],
"feedback": feedback,
"input_text": text[:500] + "..." if len(text) > 500 else text,
"detected_language": "en",
"top_5_predictions": result.get("top_5_predictions", []),
"models_used": result.get("models_used", 1),
"using_fallback": result.get("using_fallback", False),
# 🆕 NEW: Halves analysis appended to response
"halves_analysis": halves_analysis
}
)
except Exception as e:
logger.error(f"Analysis error: {e}", exc_info=True)
return DetectionResult(
success=False,
code=500,
message=f"Analysis failed: {str(e)}",
data={}
)
@app.post("/analyze-simple")
async def analyze_simple(data: SimpleTextInput):
"""
تحليل مبسط - يرجع النتائج الأساسية فقط
"""
try:
text = data.text.strip()
if not text:
raise HTTPException(status_code=400, detail="Empty text")
if not model_manager.models_loaded:
if not model_manager.load_models():
raise HTTPException(status_code=503, detail="Models not available")
result = model_manager.classify_text(text)
return {
"is_ai": result["ai_percentage"] > 50,
"ai_score": result["ai_percentage"],
"human_score": result["human_percentage"],
"detected_model": result["predicted_model"] if result["ai_percentage"] > 50 else None,
"confidence": max(result["ai_percentage"], result["human_percentage"]),
"using_fallback": result.get("using_fallback", False)
}
except HTTPException:
raise
except Exception as e:
logger.error(f"Simple analysis error: {e}")
raise HTTPException(status_code=500, detail=str(e))
# =====================================================
# 🏃 تشغيل التطبيق
# =====================================================
if __name__ == "__main__":
import uvicorn
# الحصول على الإعدادات من البيئة
port = int(os.environ.get("PORT", 8000))
host = os.environ.get("HOST", "0.0.0.0")
workers = int(os.environ.get("WORKERS", 1))
logger.info("=" * 50)
logger.info(f"🌐 Starting server on {host}:{port}")
logger.info(f"👷 Workers: {workers}")
logger.info(f"📚 Documentation: http://{host}:{port}/docs")
logger.info("=" * 50)
uvicorn.run(
"main:app", # Assuming this file is named main.py
host=host,
port=port,
workers=workers,
reload=False # Set to True for dev
)