Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -365,6 +365,7 @@ def split_content_in_half(text: str) -> tuple:
|
|
| 365 |
def analyze_content_halves(model_manager, text: str, overall_result: Dict = None) -> Dict:
|
| 366 |
"""
|
| 367 |
Analyze text by splitting it into two halves after cleaning
|
|
|
|
| 368 |
|
| 369 |
Args:
|
| 370 |
model_manager: The ModelManager instance
|
|
@@ -387,11 +388,13 @@ def analyze_content_halves(model_manager, text: str, overall_result: Dict = None
|
|
| 387 |
# Split into halves
|
| 388 |
first_half, second_half = split_content_in_half(cleaned_text)
|
| 389 |
|
| 390 |
-
# Analyze first half
|
|
|
|
| 391 |
first_half_result = model_manager.classify_text(first_half)
|
| 392 |
first_half_words = len(first_half.split())
|
| 393 |
|
| 394 |
-
# Analyze second half
|
|
|
|
| 395 |
second_half_result = model_manager.classify_text(second_half)
|
| 396 |
second_half_words = len(second_half.split())
|
| 397 |
|
|
@@ -401,6 +404,10 @@ def analyze_content_halves(model_manager, text: str, overall_result: Dict = None
|
|
| 401 |
first_model = first_half_result["predicted_model"]
|
| 402 |
second_model = second_half_result["predicted_model"]
|
| 403 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 404 |
# Calculate average AI score from both halves
|
| 405 |
avg_halves_ai_score = (first_ai + second_ai) / 2
|
| 406 |
|
|
@@ -410,6 +417,16 @@ def analyze_content_halves(model_manager, text: str, overall_result: Dict = None
|
|
| 410 |
# Overall AI probability (use overall_result if provided, otherwise calculate)
|
| 411 |
overall_ai_prob = overall_result["ai_percentage"] / 100 if overall_result else avg_halves_ai_score / 100
|
| 412 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 413 |
# ===== FINAL DECISION LOGIC =====
|
| 414 |
verdict = None
|
| 415 |
confidence = None
|
|
@@ -420,17 +437,19 @@ def analyze_content_halves(model_manager, text: str, overall_result: Dict = None
|
|
| 420 |
verdict = "HUMAN"
|
| 421 |
confidence = "High" if variance_between_halves < 15 else "Medium"
|
| 422 |
reasoning = (
|
| 423 |
-
f"Both halves scored below 50% AI probability (First: {first_ai}%, Second: {second_ai}%)
|
|
|
|
| 424 |
f"The second half was classified as human-written. "
|
| 425 |
f"Variance between halves is {variance_between_halves:.2f}%, indicating "
|
| 426 |
-
f"{'consistent human patterns' if variance_between_halves < 15 else 'some variation but still human-like'}."
|
|
|
|
| 427 |
)
|
| 428 |
|
| 429 |
# Condition 2: Both halves > 50% AI AND second_half predicted_model is NOT "human"
|
| 430 |
elif first_ai > 50 and second_ai > 50 and second_model.lower() != "human":
|
| 431 |
verdict = "AI"
|
| 432 |
|
| 433 |
-
# Determine confidence based on scores
|
| 434 |
if first_ai > 80 and second_ai > 80:
|
| 435 |
confidence = "Very High"
|
| 436 |
elif first_ai > 70 and second_ai > 70:
|
|
@@ -438,11 +457,21 @@ def analyze_content_halves(model_manager, text: str, overall_result: Dict = None
|
|
| 438 |
else:
|
| 439 |
confidence = "Medium"
|
| 440 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 441 |
reasoning = (
|
| 442 |
-
f"Both halves scored above 50% AI probability (First: {first_ai}%, Second: {second_ai}%)
|
|
|
|
| 443 |
f"The pattern matches {second_model} outputs. "
|
|
|
|
| 444 |
f"Variance between halves is {variance_between_halves:.2f}%, "
|
| 445 |
-
f"{'showing consistent AI patterns throughout' if variance_between_halves < 20 else 'with some variation in AI generation style'}."
|
|
|
|
| 446 |
)
|
| 447 |
|
| 448 |
# Condition 3: Mixed results - one half AI, one half human
|
|
@@ -450,7 +479,8 @@ def analyze_content_halves(model_manager, text: str, overall_result: Dict = None
|
|
| 450 |
verdict = "MIXED"
|
| 451 |
confidence = "Low"
|
| 452 |
reasoning = (
|
| 453 |
-
f"Mixed signals detected
|
|
|
|
| 454 |
f"One portion appears AI-generated while the other seems human-written. "
|
| 455 |
f"This could indicate: partial AI assistance, human editing of AI content, "
|
| 456 |
f"or AI completion of human-started text. High variance of {variance_between_halves:.2f}% supports mixed authorship."
|
|
@@ -463,7 +493,8 @@ def analyze_content_halves(model_manager, text: str, overall_result: Dict = None
|
|
| 463 |
verdict = "LIKELY_HUMAN"
|
| 464 |
confidence = "Low"
|
| 465 |
reasoning = (
|
| 466 |
-
f"Borderline case with scores near 50% threshold (First: {first_ai}%, Second: {second_ai}%)
|
|
|
|
| 467 |
f"Second half classified as human-written. The text shows characteristics of both "
|
| 468 |
f"human and AI writing. Variance: {variance_between_halves:.2f}%."
|
| 469 |
)
|
|
@@ -471,12 +502,13 @@ def analyze_content_halves(model_manager, text: str, overall_result: Dict = None
|
|
| 471 |
verdict = "LIKELY_AI"
|
| 472 |
confidence = "Low"
|
| 473 |
reasoning = (
|
| 474 |
-
f"Borderline case with scores near 50% threshold (First: {first_ai}%, Second: {second_ai}%)
|
|
|
|
| 475 |
f"Pattern suggests {second_model} but confidence is low. "
|
| 476 |
f"Variance: {variance_between_halves:.2f}%."
|
| 477 |
)
|
| 478 |
|
| 479 |
-
# Prepare final decision structure
|
| 480 |
final_decision = {
|
| 481 |
"verdict": verdict,
|
| 482 |
"confidence": confidence,
|
|
@@ -489,7 +521,9 @@ def analyze_content_halves(model_manager, text: str, overall_result: Dict = None
|
|
| 489 |
"variance_between_halves": round(variance_between_halves, 2),
|
| 490 |
"first_half_model": first_model,
|
| 491 |
"second_half_model": second_model,
|
| 492 |
-
"models_agree":
|
|
|
|
|
|
|
| 493 |
}
|
| 494 |
}
|
| 495 |
|
|
@@ -505,12 +539,21 @@ def analyze_content_halves(model_manager, text: str, overall_result: Dict = None
|
|
| 505 |
"human_percentage": first_half_result["human_percentage"],
|
| 506 |
"predicted_model": first_model,
|
| 507 |
"word_count": first_half_words,
|
| 508 |
-
"preview": first_half[:200] + "..." if len(first_half) > 200 else first_half
|
|
|
|
|
|
|
| 509 |
},
|
| 510 |
"second_half": {
|
| 511 |
"ai_percentage": second_ai,
|
| 512 |
"human_percentage": second_half_result["human_percentage"],
|
| 513 |
"predicted_model": second_model,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 514 |
"word_count": second_half_words,
|
| 515 |
"preview": second_half[:200] + "..." if len(second_half) > 200 else second_half
|
| 516 |
},
|
|
|
|
| 365 |
def analyze_content_halves(model_manager, text: str, overall_result: Dict = None) -> Dict:
|
| 366 |
"""
|
| 367 |
Analyze text by splitting it into two halves after cleaning
|
| 368 |
+
Uses BOTH models for ensemble predictions on each half for improved accuracy
|
| 369 |
|
| 370 |
Args:
|
| 371 |
model_manager: The ModelManager instance
|
|
|
|
| 388 |
# Split into halves
|
| 389 |
first_half, second_half = split_content_in_half(cleaned_text)
|
| 390 |
|
| 391 |
+
# Analyze first half using BOTH models (ensemble prediction)
|
| 392 |
+
logger.info("🔍 Analyzing first half with both models...")
|
| 393 |
first_half_result = model_manager.classify_text(first_half)
|
| 394 |
first_half_words = len(first_half.split())
|
| 395 |
|
| 396 |
+
# Analyze second half using BOTH models (ensemble prediction)
|
| 397 |
+
logger.info("🔍 Analyzing second half with both models...")
|
| 398 |
second_half_result = model_manager.classify_text(second_half)
|
| 399 |
second_half_words = len(second_half.split())
|
| 400 |
|
|
|
|
| 404 |
first_model = first_half_result["predicted_model"]
|
| 405 |
second_model = second_half_result["predicted_model"]
|
| 406 |
|
| 407 |
+
# Get top predictions from both halves for comparison
|
| 408 |
+
first_top5 = first_half_result.get("top_5_predictions", [])
|
| 409 |
+
second_top5 = second_half_result.get("top_5_predictions", [])
|
| 410 |
+
|
| 411 |
# Calculate average AI score from both halves
|
| 412 |
avg_halves_ai_score = (first_ai + second_ai) / 2
|
| 413 |
|
|
|
|
| 417 |
# Overall AI probability (use overall_result if provided, otherwise calculate)
|
| 418 |
overall_ai_prob = overall_result["ai_percentage"] / 100 if overall_result else avg_halves_ai_score / 100
|
| 419 |
|
| 420 |
+
# Check model consistency across halves
|
| 421 |
+
models_agree = first_model == second_model
|
| 422 |
+
|
| 423 |
+
# Calculate confidence boost from using both models
|
| 424 |
+
models_used = first_half_result.get("models_used", 1)
|
| 425 |
+
ensemble_confidence_boost = "High" if models_used > 1 else "Low"
|
| 426 |
+
|
| 427 |
+
logger.info(f"✅ First half: {first_ai}% AI ({first_model}) | Second half: {second_ai}% AI ({second_model})")
|
| 428 |
+
logger.info(f"📊 Models used per half: {models_used} | Agreement: {models_agree}")
|
| 429 |
+
|
| 430 |
# ===== FINAL DECISION LOGIC =====
|
| 431 |
verdict = None
|
| 432 |
confidence = None
|
|
|
|
| 437 |
verdict = "HUMAN"
|
| 438 |
confidence = "High" if variance_between_halves < 15 else "Medium"
|
| 439 |
reasoning = (
|
| 440 |
+
f"Both halves scored below 50% AI probability (First: {first_ai}%, Second: {second_ai}%) "
|
| 441 |
+
f"using ensemble prediction from {models_used} model(s). "
|
| 442 |
f"The second half was classified as human-written. "
|
| 443 |
f"Variance between halves is {variance_between_halves:.2f}%, indicating "
|
| 444 |
+
f"{'consistent human patterns' if variance_between_halves < 15 else 'some variation but still human-like'}. "
|
| 445 |
+
f"Model predictions {'agree' if models_agree else 'differ'} across halves."
|
| 446 |
)
|
| 447 |
|
| 448 |
# Condition 2: Both halves > 50% AI AND second_half predicted_model is NOT "human"
|
| 449 |
elif first_ai > 50 and second_ai > 50 and second_model.lower() != "human":
|
| 450 |
verdict = "AI"
|
| 451 |
|
| 452 |
+
# Determine confidence based on scores and model agreement
|
| 453 |
if first_ai > 80 and second_ai > 80:
|
| 454 |
confidence = "Very High"
|
| 455 |
elif first_ai > 70 and second_ai > 70:
|
|
|
|
| 457 |
else:
|
| 458 |
confidence = "Medium"
|
| 459 |
|
| 460 |
+
# Boost confidence if models agree
|
| 461 |
+
if models_agree and confidence != "Very High":
|
| 462 |
+
confidence_levels = ["Low", "Medium", "High", "Very High"]
|
| 463 |
+
current_idx = confidence_levels.index(confidence)
|
| 464 |
+
if current_idx < len(confidence_levels) - 1:
|
| 465 |
+
confidence = f"{confidence} (boosted by model agreement)"
|
| 466 |
+
|
| 467 |
reasoning = (
|
| 468 |
+
f"Both halves scored above 50% AI probability (First: {first_ai}%, Second: {second_ai}%) "
|
| 469 |
+
f"using ensemble prediction from {models_used} model(s). "
|
| 470 |
f"The pattern matches {second_model} outputs. "
|
| 471 |
+
f"First half suggests {first_model} while second half suggests {second_model}. "
|
| 472 |
f"Variance between halves is {variance_between_halves:.2f}%, "
|
| 473 |
+
f"{'showing consistent AI patterns throughout' if variance_between_halves < 20 else 'with some variation in AI generation style'}. "
|
| 474 |
+
f"{'Both halves agree on the AI model type, strengthening confidence' if models_agree else 'Different AI models detected in each half'}."
|
| 475 |
)
|
| 476 |
|
| 477 |
# Condition 3: Mixed results - one half AI, one half human
|
|
|
|
| 479 |
verdict = "MIXED"
|
| 480 |
confidence = "Low"
|
| 481 |
reasoning = (
|
| 482 |
+
f"Mixed signals detected using {models_used} model(s) for ensemble prediction. "
|
| 483 |
+
f"First half: {first_ai}% AI ({first_model}), Second half: {second_ai}% AI ({second_model}). "
|
| 484 |
f"One portion appears AI-generated while the other seems human-written. "
|
| 485 |
f"This could indicate: partial AI assistance, human editing of AI content, "
|
| 486 |
f"or AI completion of human-started text. High variance of {variance_between_halves:.2f}% supports mixed authorship."
|
|
|
|
| 493 |
verdict = "LIKELY_HUMAN"
|
| 494 |
confidence = "Low"
|
| 495 |
reasoning = (
|
| 496 |
+
f"Borderline case with scores near 50% threshold (First: {first_ai}%, Second: {second_ai}%) "
|
| 497 |
+
f"analyzed using {models_used} model(s). "
|
| 498 |
f"Second half classified as human-written. The text shows characteristics of both "
|
| 499 |
f"human and AI writing. Variance: {variance_between_halves:.2f}%."
|
| 500 |
)
|
|
|
|
| 502 |
verdict = "LIKELY_AI"
|
| 503 |
confidence = "Low"
|
| 504 |
reasoning = (
|
| 505 |
+
f"Borderline case with scores near 50% threshold (First: {first_ai}%, Second: {second_ai}%) "
|
| 506 |
+
f"analyzed using {models_used} model(s). "
|
| 507 |
f"Pattern suggests {second_model} but confidence is low. "
|
| 508 |
f"Variance: {variance_between_halves:.2f}%."
|
| 509 |
)
|
| 510 |
|
| 511 |
+
# Prepare final decision structure with enhanced model information
|
| 512 |
final_decision = {
|
| 513 |
"verdict": verdict,
|
| 514 |
"confidence": confidence,
|
|
|
|
| 521 |
"variance_between_halves": round(variance_between_halves, 2),
|
| 522 |
"first_half_model": first_model,
|
| 523 |
"second_half_model": second_model,
|
| 524 |
+
"models_agree": models_agree,
|
| 525 |
+
"ensemble_models_used": models_used,
|
| 526 |
+
"ensemble_confidence": ensemble_confidence_boost
|
| 527 |
}
|
| 528 |
}
|
| 529 |
|
|
|
|
| 539 |
"human_percentage": first_half_result["human_percentage"],
|
| 540 |
"predicted_model": first_model,
|
| 541 |
"word_count": first_half_words,
|
| 542 |
+
"preview": first_half[:200] + "..." if len(first_half) > 200 else first_half,
|
| 543 |
+
"top_5_predictions": first_top5,
|
| 544 |
+
"models_used": models_used
|
| 545 |
},
|
| 546 |
"second_half": {
|
| 547 |
"ai_percentage": second_ai,
|
| 548 |
"human_percentage": second_half_result["human_percentage"],
|
| 549 |
"predicted_model": second_model,
|
| 550 |
+
"word_count": second_half_words,
|
| 551 |
+
"preview": second_half[:200] + "..." if len(second_half) > 200 else second_half,
|
| 552 |
+
"top_5_predictions": second_top5,
|
| 553 |
+
"models_used": models_used
|
| 554 |
+
},
|
| 555 |
+
"final_decision": final_decision
|
| 556 |
+
}
|
| 557 |
"word_count": second_half_words,
|
| 558 |
"preview": second_half[:200] + "..." if len(second_half) > 200 else second_half
|
| 559 |
},
|