Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,153 +1,192 @@
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
import re
|
| 3 |
-
import io
|
| 4 |
-
import base64
|
| 5 |
import matplotlib
|
| 6 |
matplotlib.use("Agg")
|
| 7 |
import matplotlib.pyplot as plt
|
| 8 |
-
from
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
#
|
| 12 |
-
#
|
| 13 |
-
#
|
| 14 |
-
device =
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
print("Loading models...")
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
label_mapping
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
def classify_text(text):
|
| 51 |
cleaned_text = clean_text(text)
|
| 52 |
-
if not cleaned_text:
|
| 53 |
-
return "<b style='color:red'>Please enter some text.</b>"
|
| 54 |
-
|
| 55 |
-
paragraphs = re.split(r'\n{2,}', cleaned_text)
|
| 56 |
-
if len(paragraphs) == 1 and len(cleaned_text.split()) > 300:
|
| 57 |
-
words = cleaned_text.split()
|
| 58 |
-
paragraphs = [' '.join(words[i:i + 300]) for i in range(0, len(words), 300)]
|
| 59 |
|
| 60 |
-
|
|
|
|
| 61 |
all_probabilities = []
|
| 62 |
|
| 63 |
-
for i,
|
| 64 |
-
inputs = tokenizer(
|
| 65 |
-
softmax_outputs = []
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
logits = m(**inputs).logits
|
| 72 |
-
softmax_outputs.append(torch.softmax(logits, dim=1))
|
| 73 |
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
|
| 81 |
human_prob = probabilities[24].item()
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
|
| 86 |
-
total = human_prob +
|
| 87 |
human_pct = (human_prob / total) * 100
|
| 88 |
-
ai_pct = (
|
| 89 |
-
ai_model = label_mapping[torch.argmax(
|
| 90 |
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
"id": i + 1,
|
| 94 |
"human": human_pct,
|
| 95 |
"ai": ai_pct,
|
| 96 |
-
"model": ai_model
|
| 97 |
-
"preview": preview
|
| 98 |
})
|
| 99 |
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
if avg_human > avg_ai:
|
| 104 |
-
|
| 105 |
else:
|
| 106 |
-
top_model = max(
|
| 107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
-
# ---
|
| 110 |
mean_probs = torch.mean(torch.stack(all_probabilities), dim=0)
|
| 111 |
top_5_probs, top_5_indices = torch.topk(mean_probs, 5)
|
| 112 |
-
|
| 113 |
-
|
| 114 |
|
| 115 |
-
fig, ax = plt.subplots(figsize=(
|
| 116 |
-
ax.barh(
|
| 117 |
-
ax.set_xlabel(
|
| 118 |
-
ax.set_title(
|
| 119 |
ax.invert_yaxis()
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
for p in paragraph_scores:
|
| 127 |
-
color = "#28a745" if p["human"] > p["ai"] else "#FF5733"
|
| 128 |
-
html += f"""
|
| 129 |
-
<div style='margin-bottom:10px; border-left:5px solid {color}; padding-left:10px; background:#f9f9f9; border-radius:6px;'>
|
| 130 |
-
<b>Paragraph {p["id"]}</b>: {p["human"]:.2f}% Human | {p["ai"]:.2f}% AI → <i>{p["model"]}</i><br>
|
| 131 |
-
<small>{p["preview"]}</small>
|
| 132 |
-
</div>
|
| 133 |
-
"""
|
| 134 |
|
| 135 |
-
html += "<br><h3>Top 5 Models:</h3>" + chart_html + "</div>"
|
| 136 |
-
return html
|
| 137 |
|
| 138 |
-
#
|
| 139 |
-
#
|
| 140 |
-
#
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
|
|
|
| 144 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
|
| 146 |
-
|
| 147 |
-
gr.Markdown("# 🧠 AI vs Human Text Detector")
|
| 148 |
-
txt = gr.Textbox(label="Paste your article", lines=12, placeholder="Enter your full text here...")
|
| 149 |
-
btn = gr.Button("Analyze", variant="primary")
|
| 150 |
-
out = gr.HTML(label="Results", elem_id="result-box")
|
| 151 |
-
btn.click(classify_text, inputs=txt, outputs=out)
|
| 152 |
|
| 153 |
-
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 3 |
import torch
|
| 4 |
import re
|
|
|
|
|
|
|
| 5 |
import matplotlib
|
| 6 |
matplotlib.use("Agg")
|
| 7 |
import matplotlib.pyplot as plt
|
| 8 |
+
from tokenizers.normalizers import Sequence, Replace, Strip
|
| 9 |
+
from tokenizers import Regex
|
| 10 |
+
|
| 11 |
+
# -------------------------
|
| 12 |
+
# Device setup
|
| 13 |
+
# -------------------------
|
| 14 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 15 |
+
|
| 16 |
+
# -------------------------
|
| 17 |
+
# Model and Tokenizer Setup
|
| 18 |
+
# -------------------------
|
| 19 |
+
model1_path = "modernbert.bin"
|
| 20 |
+
model2_path = "https://huggingface.co/mihalykiss/modernbert_2/resolve/main/Model_groups_3class_seed12"
|
| 21 |
+
model3_path = "https://huggingface.co/mihalykiss/modernbert_2/resolve/main/Model_groups_3class_seed22"
|
| 22 |
+
|
| 23 |
+
tokenizer = AutoTokenizer.from_pretrained("answerdotai/ModernBERT-base")
|
| 24 |
+
|
| 25 |
+
def safe_load_model(base_name, weights_path):
|
| 26 |
+
model = AutoModelForSequenceClassification.from_pretrained(base_name, num_labels=41)
|
| 27 |
+
state_dict = torch.hub.load_state_dict_from_url(weights_path, map_location=device) if weights_path.startswith("http") else torch.load(weights_path, map_location=device)
|
| 28 |
+
model.load_state_dict(state_dict)
|
| 29 |
+
model.to(device).eval()
|
| 30 |
+
return model
|
| 31 |
|
| 32 |
print("Loading models...")
|
| 33 |
+
model_1 = safe_load_model("answerdotai/ModernBERT-base", model1_path)
|
| 34 |
+
model_2 = safe_load_model("answerdotai/ModernBERT-base", model2_path)
|
| 35 |
+
model_3 = safe_load_model("answerdotai/ModernBERT-base", model3_path)
|
| 36 |
+
|
| 37 |
+
# -------------------------
|
| 38 |
+
# Label Mapping
|
| 39 |
+
# -------------------------
|
| 40 |
+
label_mapping = {
|
| 41 |
+
0: '13B', 1: '30B', 2: '65B', 3: '7B', 4: 'GLM130B', 5: 'bloom_7b',
|
| 42 |
+
6: 'bloomz', 7: 'cohere', 8: 'davinci', 9: 'dolly', 10: 'dolly-v2-12b',
|
| 43 |
+
11: 'flan_t5_base', 12: 'flan_t5_large', 13: 'flan_t5_small',
|
| 44 |
+
14: 'flan_t5_xl', 15: 'flan_t5_xxl', 16: 'gemma-7b-it', 17: 'gemma2-9b-it',
|
| 45 |
+
18: 'gpt-3.5-turbo', 19: 'gpt-35', 20: 'gpt4', 21: 'gpt4o',
|
| 46 |
+
22: 'gpt_j', 23: 'gpt_neox', 24: 'human', 25: 'llama3-70b', 26: 'llama3-8b',
|
| 47 |
+
27: 'mixtral-8x7b', 28: 'opt_1.3b', 29: 'opt_125m', 30: 'opt_13b',
|
| 48 |
+
31: 'opt_2.7b', 32: 'opt_30b', 33: 'opt_350m', 34: 'opt_6.7b',
|
| 49 |
+
35: 'opt_iml_30b', 36: 'opt_iml_max_1.3b', 37: 't0_11b', 38: 't0_3b',
|
| 50 |
+
39: 'text-davinci-002', 40: 'text-davinci-003'
|
| 51 |
+
}
|
| 52 |
+
|
| 53 |
+
# -------------------------
|
| 54 |
+
# Text Cleaning
|
| 55 |
+
# -------------------------
|
| 56 |
+
def clean_text(text: str) -> str:
|
| 57 |
+
text = re.sub(r'\s{2,}', ' ', text)
|
| 58 |
+
text = re.sub(r'\s+([,.;:?!])', r'\1', text)
|
| 59 |
+
return text
|
| 60 |
+
|
| 61 |
+
newline_to_space = Replace(Regex(r'\s*\n\s*'), " ")
|
| 62 |
+
tokenizer.backend_tokenizer.normalizer = Sequence([
|
| 63 |
+
tokenizer.backend_tokenizer.normalizer,
|
| 64 |
+
newline_to_space,
|
| 65 |
+
Strip()
|
| 66 |
+
])
|
| 67 |
+
|
| 68 |
+
# -------------------------
|
| 69 |
+
# Classification Function
|
| 70 |
+
# -------------------------
|
| 71 |
def classify_text(text):
|
| 72 |
cleaned_text = clean_text(text)
|
| 73 |
+
if not cleaned_text.strip():
|
| 74 |
+
return "<b style='color:red;'>Please enter some text to analyze.</b>", None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
+
paragraphs = [p.strip() for p in re.split(r'\n{2,}', cleaned_text) if p.strip()]
|
| 77 |
+
chunk_scores = []
|
| 78 |
all_probabilities = []
|
| 79 |
|
| 80 |
+
for i, paragraph in enumerate(paragraphs):
|
| 81 |
+
inputs = tokenizer(paragraph, return_tensors="pt", truncation=True, padding=True).to(device)
|
|
|
|
| 82 |
|
| 83 |
+
with torch.no_grad():
|
| 84 |
+
logits_1 = model_1(**inputs).logits
|
| 85 |
+
logits_2 = model_2(**inputs).logits
|
| 86 |
+
logits_3 = model_3(**inputs).logits
|
|
|
|
|
|
|
| 87 |
|
| 88 |
+
softmax_1 = torch.softmax(logits_1, dim=1)
|
| 89 |
+
softmax_2 = torch.softmax(logits_2, dim=1)
|
| 90 |
+
softmax_3 = torch.softmax(logits_3, dim=1)
|
| 91 |
+
averaged_probabilities = (softmax_1 + softmax_2 + softmax_3) / 3
|
| 92 |
+
probabilities = averaged_probabilities[0]
|
| 93 |
+
all_probabilities.append(probabilities.cpu())
|
| 94 |
|
| 95 |
human_prob = probabilities[24].item()
|
| 96 |
+
ai_probs_clone = probabilities.clone()
|
| 97 |
+
ai_probs_clone[24] = 0
|
| 98 |
+
ai_total_prob = ai_probs_clone.sum().item()
|
| 99 |
|
| 100 |
+
total = human_prob + ai_total_prob
|
| 101 |
human_pct = (human_prob / total) * 100
|
| 102 |
+
ai_pct = (ai_total_prob / total) * 100
|
| 103 |
+
ai_model = label_mapping[torch.argmax(ai_probs_clone).item()]
|
| 104 |
|
| 105 |
+
chunk_scores.append({
|
| 106 |
+
"paragraph": paragraph[:150] + ("..." if len(paragraph) > 150 else ""),
|
|
|
|
| 107 |
"human": human_pct,
|
| 108 |
"ai": ai_pct,
|
| 109 |
+
"model": ai_model
|
|
|
|
| 110 |
})
|
| 111 |
|
| 112 |
+
# --- Overall ---
|
| 113 |
+
avg_human = sum(c["human"] for c in chunk_scores) / len(chunk_scores)
|
| 114 |
+
avg_ai = sum(c["ai"] for c in chunk_scores) / len(chunk_scores)
|
| 115 |
if avg_human > avg_ai:
|
| 116 |
+
result_message = f"**Overall Result:** <span class='highlight-human'>{avg_human:.2f}% Human-written</span>"
|
| 117 |
else:
|
| 118 |
+
top_model = max(chunk_scores, key=lambda c: c['ai'])['model']
|
| 119 |
+
result_message = f"**Overall Result:** <span class='highlight-ai'>{avg_ai:.2f}% AI-generated (likely {top_model})</span>"
|
| 120 |
+
|
| 121 |
+
# --- Paragraph Breakdown ---
|
| 122 |
+
paragraph_html = "<h3>Paragraph Analysis:</h3>"
|
| 123 |
+
for idx, c in enumerate(chunk_scores, 1):
|
| 124 |
+
color = "#4CAF50" if c['human'] > c['ai'] else "#FF5733"
|
| 125 |
+
paragraph_html += f"""
|
| 126 |
+
<div style='margin-bottom:10px; border-left:4px solid {color}; padding-left:10px;'>
|
| 127 |
+
<b>Paragraph {idx}</b>: {c['human']:.2f}% Human | {c['ai']:.2f}% AI → <i>{c['model']}</i><br>
|
| 128 |
+
<small>{c['paragraph']}</small></div>
|
| 129 |
+
"""
|
| 130 |
|
| 131 |
+
# --- Plot ---
|
| 132 |
mean_probs = torch.mean(torch.stack(all_probabilities), dim=0)
|
| 133 |
top_5_probs, top_5_indices = torch.topk(mean_probs, 5)
|
| 134 |
+
top_5_probs = top_5_probs.cpu().numpy()
|
| 135 |
+
top_5_labels = [label_mapping[i.item()] for i in top_5_indices]
|
| 136 |
|
| 137 |
+
fig, ax = plt.subplots(figsize=(10, 5))
|
| 138 |
+
bars = ax.barh(top_5_labels, top_5_probs, color='#4CAF50')
|
| 139 |
+
ax.set_xlabel('Probability')
|
| 140 |
+
ax.set_title('Top 5 Model Predictions')
|
| 141 |
ax.invert_yaxis()
|
| 142 |
+
for bar in bars:
|
| 143 |
+
width = bar.get_width()
|
| 144 |
+
ax.text(width + 0.005, bar.get_y() + bar.get_height() / 2, f'{width:.2%}', va='center')
|
| 145 |
+
plt.tight_layout()
|
| 146 |
+
|
| 147 |
+
return result_message + "<br><br>" + paragraph_html, fig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
|
|
|
|
|
|
|
| 149 |
|
| 150 |
+
# -------------------------
|
| 151 |
+
# UI Setup
|
| 152 |
+
# -------------------------
|
| 153 |
+
title = "AI Text Detector"
|
| 154 |
+
description = """
|
| 155 |
+
This tool uses <b>ModernBERT</b> to detect AI-generated text.<br>
|
| 156 |
+
Each paragraph is analyzed separately to show which parts are likely AI-generated.
|
| 157 |
"""
|
| 158 |
+
bottom_text = "**Developed by SzegedAI – Extended by Saber**"
|
| 159 |
+
|
| 160 |
+
AI_texts = [
|
| 161 |
+
"Artificial intelligence (AI) is reshaping industries by automating tasks, enhancing decision-making, and driving innovation. From predictive analytics in finance to autonomous vehicles in transportation, AI technologies are becoming integral to daily operations."
|
| 162 |
+
]
|
| 163 |
+
|
| 164 |
+
Human_texts = [
|
| 165 |
+
"Mathematics has always been a cornerstone of scientific discovery. It provides a precise language for describing natural phenomena, from the orbit of planets to the behavior of subatomic particles."
|
| 166 |
+
]
|
| 167 |
+
|
| 168 |
+
iface = gr.Blocks(css="""
|
| 169 |
+
@import url('https://fonts.googleapis.com/css2?family=Roboto+Mono:wght@400;700&display=swap');
|
| 170 |
+
body { font-family: 'Roboto Mono', sans-serif !important; }
|
| 171 |
+
.highlight-human { color: #4CAF50; font-weight: bold; }
|
| 172 |
+
.highlight-ai { color: #FF5733; font-weight: bold; }
|
| 173 |
+
""")
|
| 174 |
+
|
| 175 |
+
with iface:
|
| 176 |
+
gr.Markdown(f"# {title}")
|
| 177 |
+
gr.Markdown(description)
|
| 178 |
+
text_input = gr.Textbox(label="", placeholder="Paste your article here...", lines=10)
|
| 179 |
+
analyze_btn = gr.Button("🔍 Analyze", variant="primary")
|
| 180 |
+
result_output = gr.HTML(label="Result")
|
| 181 |
+
plot_output = gr.Plot(label="Model Probability Distribution")
|
| 182 |
+
|
| 183 |
+
analyze_btn.click(classify_text, inputs=text_input, outputs=[result_output, plot_output])
|
| 184 |
+
|
| 185 |
+
with gr.Tab("AI Examples"):
|
| 186 |
+
gr.Examples(AI_texts, inputs=text_input)
|
| 187 |
+
with gr.Tab("Human Examples"):
|
| 188 |
+
gr.Examples(Human_texts, inputs=text_input)
|
| 189 |
|
| 190 |
+
gr.Markdown(bottom_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
|
| 192 |
+
iface.launch(share=True)
|