mahmoudsaber0 commited on
Commit
9cf13c3
·
verified ·
1 Parent(s): 1c6b6b0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +58 -138
app.py CHANGED
@@ -1,90 +1,66 @@
1
- import gradio as gr
2
- from transformers import AutoTokenizer, AutoModelForSequenceClassification
3
- import torch
4
  import re
5
- import matplotlib.pyplot as plt
6
- from tokenizers.normalizers import Sequence, Replace, Strip
7
- from tokenizers import Regex
8
-
9
- # ---- Device setup ----
10
- device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
11
-
12
- # ---- Model and Tokenizer Setup ----
13
- model1_path = "modernbert.bin"
14
- model2_path = "https://huggingface.co/mihalykiss/modernbert_2/resolve/main/Model_groups_3class_seed12"
15
- model3_path = "https://huggingface.co/mihalykiss/modernbert_2/resolve/main/Model_groups_3class_seed22"
16
-
17
- tokenizer = AutoTokenizer.from_pretrained("answerdotai/ModernBERT-base")
18
-
19
- # Load models
20
- model_1 = AutoModelForSequenceClassification.from_pretrained("answerdotai/ModernBERT-base", num_labels=41)
21
- model_1.load_state_dict(torch.load(model1_path, map_location=device))
22
- model_1.to(device).eval()
23
-
24
- model_2 = AutoModelForSequenceClassification.from_pretrained("answerdotai/ModernBERT-base", num_labels=41)
25
- model_2.load_state_dict(torch.hub.load_state_dict_from_url(model2_path, map_location=device))
26
- model_2.to(device).eval()
27
 
28
- model_3 = AutoModelForSequenceClassification.from_pretrained("answerdotai/ModernBERT-base", num_labels=41)
29
- model_3.load_state_dict(torch.hub.load_state_dict_from_url(model3_path, map_location=device))
30
- model_3.to(device).eval()
31
 
 
 
 
 
32
 
33
- # ---- Label Mapping ----
34
  label_mapping = {
35
- 0: '13B', 1: '30B', 2: '65B', 3: '7B', 4: 'GLM130B', 5: 'bloom_7b',
36
- 6: 'bloomz', 7: 'cohere', 8: 'davinci', 9: 'dolly', 10: 'dolly-v2-12b',
37
- 11: 'flan_t5_base', 12: 'flan_t5_large', 13: 'flan_t5_small',
38
- 14: 'flan_t5_xl', 15: 'flan_t5_xxl', 16: 'gemma-7b-it', 17: 'gemma2-9b-it',
39
- 18: 'gpt-3.5-turbo', 19: 'gpt-35', 20: 'gpt4', 21: 'gpt4o',
40
- 22: 'gpt_j', 23: 'gpt_neox', 24: 'human', 25: 'llama3-70b', 26: 'llama3-8b',
41
- 27: 'mixtral-8x7b', 28: 'opt_1.3b', 29: 'opt_125m', 30: 'opt_13b',
42
- 31: 'opt_2.7b', 32: 'opt_30b', 33: 'opt_350m', 34: 'opt_6.7b',
43
- 35: 'opt_iml_30b', 36: 'opt_iml_max_1.3b', 37: 't0_11b', 38: 't0_3b',
44
- 39: 'text-davinci-002', 40: 'text-davinci-003'
45
  }
46
 
47
- # ---- Text Cleaning ----
 
 
 
48
  def clean_text(text: str) -> str:
49
- text = re.sub(r'\s{2,}', ' ', text)
50
- text = re.sub(r'\s+([,.;:?!])', r'\1', text)
51
- return text
52
 
53
- newline_to_space = Replace(Regex(r'\s*\n\s*'), " ")
54
- tokenizer.backend_tokenizer.normalizer = Sequence([
55
- tokenizer.backend_tokenizer.normalizer,
56
- newline_to_space,
57
- Strip()
58
- ])
59
 
60
 
61
- # ---- Classification Function ----
62
- def classify_text(text):
63
- cleaned_text = clean_text(text)
 
64
  if not cleaned_text.strip():
65
- return "**Error:** Please enter some text to analyze.", None
66
 
67
- # Split into paragraphs
68
  paragraphs = [p.strip() for p in re.split(r'\n{2,}', cleaned_text) if p.strip()]
 
 
 
69
  chunk_scores = []
70
- all_probabilities = []
71
 
72
- for i, paragraph in enumerate(paragraphs):
73
  inputs = tokenizer(paragraph, return_tensors="pt", truncation=True, padding=True).to(device)
74
  with torch.no_grad():
75
  logits_1 = model_1(**inputs).logits
76
  logits_2 = model_2(**inputs).logits
77
  logits_3 = model_3(**inputs).logits
78
-
79
  softmax_1 = torch.softmax(logits_1, dim=1)
80
  softmax_2 = torch.softmax(logits_2, dim=1)
81
  softmax_3 = torch.softmax(logits_3, dim=1)
 
 
 
82
 
83
- avg_probs = (softmax_1 + softmax_2 + softmax_3) / 3
84
- probs = avg_probs[0]
85
- all_probabilities.append(probs.cpu())
86
-
87
- human_prob = probs[24].item()
88
  ai_probs_clone = probs.clone()
89
  ai_probs_clone[24] = 0
90
  ai_total = ai_probs_clone.sum().item()
@@ -94,86 +70,30 @@ def classify_text(text):
94
  ai_model = label_mapping[torch.argmax(ai_probs_clone).item()]
95
 
96
  chunk_scores.append({
97
- "human": human_pct,
98
- "ai": ai_pct,
99
  "model": ai_model,
100
- "text": paragraph[:200].replace('\n', ' ') + ("..." if len(paragraph) > 200 else "")
101
  })
102
 
103
- # ---- Overall Averages ----
104
  avg_human = sum(c["human"] for c in chunk_scores) / len(chunk_scores)
105
  avg_ai = sum(c["ai"] for c in chunk_scores) / len(chunk_scores)
106
 
107
- if avg_human > avg_ai:
108
- result_message = f"**Overall Result:** <span class='highlight-human'>{avg_human:.2f}% Human-written</span>"
 
109
  else:
110
- top_model = max(chunk_scores, key=lambda c: c['ai'])['model']
111
- result_message = f"**Overall Result:** <span class='highlight-ai'>{avg_ai:.2f}% AI-generated (likely {top_model})</span>"
112
-
113
- # ---- Paragraph Analysis (Markdown Clean) ----
114
- paragraph_text = "\n\n**Paragraph Analysis:**\n"
115
- for i, c in enumerate(chunk_scores, 1):
116
- paragraph_text += (
117
- f"**Paragraph {i}:** {c['human']:.2f}% Human | {c['ai']:.2f}% AI → *{c['model']}*\n"
118
- f"{c['text']}\n\n"
119
- )
120
-
121
- # ---- Top 5 Models Plot ----
122
- mean_probs = torch.mean(torch.stack(all_probabilities), dim=0)
123
- top_5_probs, top_5_idx = torch.topk(mean_probs, 5)
124
- top_5_probs = top_5_probs.cpu().numpy()
125
- top_5_labels = [label_mapping[i.item()] for i in top_5_idx]
126
-
127
- fig, ax = plt.subplots(figsize=(10, 5))
128
- bars = ax.barh(top_5_labels, top_5_probs, color='#4CAF50')
129
- ax.set_xlabel('Probability')
130
- ax.set_title('Top 5 Model Predictions')
131
- ax.invert_yaxis()
132
- for bar in bars:
133
- width = bar.get_width()
134
- ax.text(width + 0.005, bar.get_y() + bar.get_height() / 2, f'{width:.2%}', va='center')
135
- plt.tight_layout()
136
-
137
- return result_message + "\n\n" + paragraph_text, fig
138
-
139
-
140
- # ---- UI Setup ----
141
- title = "AI Text Detector"
142
- description = """
143
- This tool uses **ModernBERT** to detect AI-generated text.
144
- Each paragraph is analyzed separately to show which parts are likely AI-generated.
145
- """
146
- bottom_text = "**Developed by SzegedAI – Extended by Saber**"
147
-
148
- AI_texts = [
149
- "Artificial intelligence (AI) is reshaping industries by automating tasks, enhancing decision-making, and driving innovation. From predictive analytics in finance to autonomous vehicles in transportation, AI technologies are becoming integral to daily operations. The future of AI lies not only in technological advancement but also in ensuring ethical use, transparency, and accountability."
150
- ]
151
-
152
- Human_texts = [
153
- "Mathematics has always been a cornerstone of scientific discovery. It provides a precise language for describing natural phenomena, from the orbit of planets to the behavior of subatomic particles. The beauty of mathematics lies in its universality—its principles hold true regardless of context or culture."
154
- ]
155
-
156
- iface = gr.Blocks(css="""
157
- @import url('https://fonts.googleapis.com/css2?family=Roboto+Mono:wght@400;700&display=swap');
158
- #text_input_box { border-radius: 10px; border: 2px solid #4CAF50; font-size: 18px; padding: 15px; margin-bottom: 20px; width: 60%; margin: auto; }
159
- #result_output_box { border-radius: 10px; border: 2px solid #4CAF50; font-size: 16px; padding: 15px; margin-top: 20px; width: 80%; margin: auto; }
160
- body { font-family: 'Roboto Mono', sans-serif !important; padding: 20px; }
161
- .gradio-container { border: 1px solid #4CAF50; border-radius: 15px; padding: 30px; box-shadow: 0px 0px 10px rgba(0,255,0,0.4); max-width: 900px; margin: auto; }
162
- .highlight-human { color: #4CAF50; font-weight: bold; }
163
- .highlight-ai { color: #FF5733; font-weight: bold; }
164
- """)
165
-
166
- with iface:
167
- gr.Markdown(f"# {title}")
168
- gr.Markdown(description)
169
- text_input = gr.Textbox(label="", placeholder="Paste your article here...", elem_id="text_input_box", lines=10)
170
- result_output = gr.HTML("", elem_id="result_output_box")
171
- plot_output = gr.Plot(label="Model Probability Distribution")
172
- text_input.change(classify_text, inputs=text_input, outputs=[result_output, plot_output])
173
- with gr.Tab("AI Examples"):
174
- gr.Examples(AI_texts, inputs=text_input)
175
- with gr.Tab("Human Examples"):
176
- gr.Examples(Human_texts, inputs=text_input)
177
- gr.Markdown(bottom_text)
178
-
179
- iface.launch(share=True)
 
 
 
 
1
  import re
2
+ import torch
3
+ from fastapi import FastAPI, Request
4
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
5
+ from pydantic import BaseModel
6
+ from typing import List
7
+ import uvicorn
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
+ # ========== CONFIG ==========
10
+ MODEL_PATH = "roberta-base-openai-detector" # or your preferred detector
11
+ device = "cuda" if torch.cuda.is_available() else "cpu"
12
 
13
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
14
+ model_1 = AutoModelForSequenceClassification.from_pretrained(MODEL_PATH).to(device)
15
+ model_2 = AutoModelForSequenceClassification.from_pretrained(MODEL_PATH).to(device)
16
+ model_3 = AutoModelForSequenceClassification.from_pretrained(MODEL_PATH).to(device)
17
 
 
18
  label_mapping = {
19
+ 0: "gpt2", 1: "gpt3", 2: "gpt4", 3: "chatgpt", 4: "dolly", 5: "human", 24: "human"
 
 
 
 
 
 
 
 
 
20
  }
21
 
22
+ app = FastAPI(title="AI Text Classifier API", version="1.0.0")
23
+
24
+
25
+ # ========== HELPERS ==========
26
  def clean_text(text: str) -> str:
27
+ text = re.sub(r'\s+', ' ', text)
28
+ return text.strip()
29
+
30
 
31
+ # ========== INPUT MODEL ==========
32
+ class TextInput(BaseModel):
33
+ text: str
 
 
 
34
 
35
 
36
+ # ========== MAIN LOGIC ==========
37
+ @app.post("/analyze")
38
+ async def analyze_text(data: TextInput):
39
+ cleaned_text = clean_text(data.text)
40
  if not cleaned_text.strip():
41
+ return {"success": False, "error": "Empty text provided"}
42
 
 
43
  paragraphs = [p.strip() for p in re.split(r'\n{2,}', cleaned_text) if p.strip()]
44
+ if not paragraphs:
45
+ paragraphs = [cleaned_text]
46
+
47
  chunk_scores = []
48
+ all_probs = []
49
 
50
+ for paragraph in paragraphs:
51
  inputs = tokenizer(paragraph, return_tensors="pt", truncation=True, padding=True).to(device)
52
  with torch.no_grad():
53
  logits_1 = model_1(**inputs).logits
54
  logits_2 = model_2(**inputs).logits
55
  logits_3 = model_3(**inputs).logits
 
56
  softmax_1 = torch.softmax(logits_1, dim=1)
57
  softmax_2 = torch.softmax(logits_2, dim=1)
58
  softmax_3 = torch.softmax(logits_3, dim=1)
59
+ averaged = (softmax_1 + softmax_2 + softmax_3) / 3
60
+ probs = averaged[0]
61
+ all_probs.append(probs.cpu())
62
 
63
+ human_prob = probs[24].item() if 24 in label_mapping else probs[-1].item()
 
 
 
 
64
  ai_probs_clone = probs.clone()
65
  ai_probs_clone[24] = 0
66
  ai_total = ai_probs_clone.sum().item()
 
70
  ai_model = label_mapping[torch.argmax(ai_probs_clone).item()]
71
 
72
  chunk_scores.append({
73
+ "human": round(human_pct, 2),
74
+ "ai": round(ai_pct, 2),
75
  "model": ai_model,
76
+ "text_preview": paragraph[:250].replace('\n', ' ') + ("..." if len(paragraph) > 250 else "")
77
  })
78
 
79
+ # ---- OVERALL ----
80
  avg_human = sum(c["human"] for c in chunk_scores) / len(chunk_scores)
81
  avg_ai = sum(c["ai"] for c in chunk_scores) / len(chunk_scores)
82
 
83
+ if avg_ai > avg_human:
84
+ top_model = max(chunk_scores, key=lambda c: c["ai"])["model"]
85
+ overall = {"result": f"{avg_ai:.2f}% AI-generated", "model": top_model}
86
  else:
87
+ overall = {"result": f"{avg_human:.2f}% Human-written", "model": "human"}
88
+
89
+ return {
90
+ "success": True,
91
+ "overall": overall,
92
+ "paragraphs": chunk_scores,
93
+ "total_paragraphs": len(chunk_scores)
94
+ }
95
+
96
+
97
+ # ========== RUN LOCALLY ==========
98
+ if __name__ == "__main__":
99
+ uvicorn.run("app:app", host="0.0.0.0", port=8000)