Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,6 @@
|
|
| 1 |
from fastapi import FastAPI, Request
|
| 2 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 3 |
import torch
|
| 4 |
-
import uvicorn
|
| 5 |
|
| 6 |
app = FastAPI(title="AI Detector API")
|
| 7 |
|
|
@@ -11,7 +10,6 @@ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
|
| 11 |
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
|
| 12 |
model.eval()
|
| 13 |
|
| 14 |
-
|
| 15 |
def get_ai_probability(text: str) -> float:
|
| 16 |
"""Return the AI probability (0–100%) for a given text."""
|
| 17 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
|
|
@@ -21,15 +19,15 @@ def get_ai_probability(text: str) -> float:
|
|
| 21 |
ai_score = probs[0][1].item() * 100
|
| 22 |
return round(ai_score, 2)
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
@app.post("/analyze")
|
| 26 |
async def analyze_text(request: Request):
|
| 27 |
-
"""
|
| 28 |
-
Example body:
|
| 29 |
-
{
|
| 30 |
-
"text": "Your long article text here"
|
| 31 |
-
}
|
| 32 |
-
"""
|
| 33 |
data = await request.json()
|
| 34 |
text = data.get("text", "").strip()
|
| 35 |
if not text:
|
|
@@ -53,7 +51,3 @@ async def analyze_text(request: Request):
|
|
| 53 |
"overall_human_score": round(100 - overall, 2),
|
| 54 |
"paragraphs": results
|
| 55 |
}
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
if __name__ == "__main__":
|
| 59 |
-
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
|
| 1 |
from fastapi import FastAPI, Request
|
| 2 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 3 |
import torch
|
|
|
|
| 4 |
|
| 5 |
app = FastAPI(title="AI Detector API")
|
| 6 |
|
|
|
|
| 10 |
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME)
|
| 11 |
model.eval()
|
| 12 |
|
|
|
|
| 13 |
def get_ai_probability(text: str) -> float:
|
| 14 |
"""Return the AI probability (0–100%) for a given text."""
|
| 15 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)
|
|
|
|
| 19 |
ai_score = probs[0][1].item() * 100
|
| 20 |
return round(ai_score, 2)
|
| 21 |
|
| 22 |
+
@app.get("/")
|
| 23 |
+
async def home():
|
| 24 |
+
return {
|
| 25 |
+
"message": "Welcome to Saber’s AI Detector API 👋",
|
| 26 |
+
"usage": "Send a POST request to /analyze with JSON {'text': 'your article text'}"
|
| 27 |
+
}
|
| 28 |
|
| 29 |
@app.post("/analyze")
|
| 30 |
async def analyze_text(request: Request):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
data = await request.json()
|
| 32 |
text = data.get("text", "").strip()
|
| 33 |
if not text:
|
|
|
|
| 51 |
"overall_human_score": round(100 - overall, 2),
|
| 52 |
"paragraphs": results
|
| 53 |
}
|
|
|
|
|
|
|
|
|
|
|
|