Spaces:
Runtime error
Runtime error
fixes
Browse files
app.py
CHANGED
|
@@ -30,66 +30,91 @@ def sample_frames(video_file, num_frames):
|
|
| 30 |
video.release()
|
| 31 |
return frames
|
| 32 |
|
| 33 |
-
@spaces.GPU
|
| 34 |
def bot_streaming(message, history):
|
| 35 |
|
| 36 |
-
txt = message
|
| 37 |
-
ext_buffer = f"
|
| 38 |
|
| 39 |
-
if message
|
| 40 |
-
if len(message
|
| 41 |
image = [message.files[0].path]
|
| 42 |
# interleaved images or video
|
| 43 |
-
elif len(message
|
| 44 |
-
image = [msg
|
| 45 |
else:
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
-
|
|
|
|
|
|
|
| 53 |
gr.Error("You need to upload an image or video for LLaVA to work.")
|
| 54 |
|
| 55 |
video_extensions = ("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg")
|
| 56 |
image_extensions = Image.registered_extensions()
|
| 57 |
image_extensions = tuple([ex for ex, f in image_extensions.items()])
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
if len(image) == 1:
|
| 59 |
if image[0].endswith(video_extensions):
|
| 60 |
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
prompt = f"
|
| 64 |
elif image[0].endswith(image_extensions):
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
prompt =
|
| 68 |
|
| 69 |
elif len(image) > 1:
|
| 70 |
-
|
| 71 |
-
user_prompt = message.text
|
| 72 |
|
| 73 |
for img in image:
|
| 74 |
if img.endswith(image_extensions):
|
| 75 |
img = Image.open(img).convert("RGB")
|
| 76 |
image_list.append(img)
|
| 77 |
|
| 78 |
-
elif img.endswith(video_extensions):
|
| 79 |
-
|
| 80 |
-
for frame in
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
|
| 86 |
-
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
|
|
|
| 89 |
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
generated_text = ""
|
| 94 |
|
| 95 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
|
@@ -101,10 +126,10 @@ def bot_streaming(message, history):
|
|
| 101 |
for new_text in streamer:
|
| 102 |
|
| 103 |
buffer += new_text
|
| 104 |
-
|
| 105 |
-
generated_text_without_prompt = buffer[len(ext_buffer):]
|
| 106 |
time.sleep(0.01)
|
| 107 |
-
yield generated_text_without_prompt
|
| 108 |
|
| 109 |
|
| 110 |
demo = gr.ChatInterface(fn=bot_streaming, title="LLaVA Onevision", examples=[
|
|
|
|
| 30 |
video.release()
|
| 31 |
return frames
|
| 32 |
|
|
|
|
| 33 |
def bot_streaming(message, history):
|
| 34 |
|
| 35 |
+
txt = message["text"]
|
| 36 |
+
ext_buffer = f"USER: {txt} ASSISTANT: "
|
| 37 |
|
| 38 |
+
if message["files"]:
|
| 39 |
+
if len(message["files"]) == 1:
|
| 40 |
image = [message.files[0].path]
|
| 41 |
# interleaved images or video
|
| 42 |
+
elif len(message["files"]) > 1:
|
| 43 |
+
image = [msg["path"] for msg in message["files"]]
|
| 44 |
else:
|
| 45 |
+
|
| 46 |
+
def has_file_data(lst):
|
| 47 |
+
return any(isinstance(item, FileData) for sublist in lst if isinstance(sublist, tuple) for item in sublist)
|
| 48 |
+
|
| 49 |
+
def extract_paths(lst):
|
| 50 |
+
return [item["path"] for sublist in lst if isinstance(sublist, tuple) for item in sublist if isinstance(item, FileData)]
|
| 51 |
+
|
| 52 |
+
latest_text_only_index = -1
|
| 53 |
+
|
| 54 |
+
for i, item in enumerate(history):
|
| 55 |
+
if all(isinstance(sub_item, str) for sub_item in item):
|
| 56 |
+
latest_text_only_index = i
|
| 57 |
|
| 58 |
+
image = [path for i, item in enumerate(history) if i < latest_text_only_index and has_file_data(item) for path in extract_paths(item)]
|
| 59 |
+
|
| 60 |
+
if message["files"] is None:
|
| 61 |
gr.Error("You need to upload an image or video for LLaVA to work.")
|
| 62 |
|
| 63 |
video_extensions = ("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg")
|
| 64 |
image_extensions = Image.registered_extensions()
|
| 65 |
image_extensions = tuple([ex for ex, f in image_extensions.items()])
|
| 66 |
+
image_list = []
|
| 67 |
+
video_list = []
|
| 68 |
+
|
| 69 |
+
print("media", image)
|
| 70 |
if len(image) == 1:
|
| 71 |
if image[0].endswith(video_extensions):
|
| 72 |
|
| 73 |
+
video_list = sample_frames(image[0], 12)
|
| 74 |
+
|
| 75 |
+
prompt = f"USER: <video> {message.text} ASSISTANT:"
|
| 76 |
elif image[0].endswith(image_extensions):
|
| 77 |
+
image_list.append(Image.open(image[0]).convert("RGB"))
|
| 78 |
+
msg = message["text"]
|
| 79 |
+
prompt = f"USER: <image> {message.text} ASSISTANT:"
|
| 80 |
|
| 81 |
elif len(image) > 1:
|
| 82 |
+
user_prompt = message["text"]
|
|
|
|
| 83 |
|
| 84 |
for img in image:
|
| 85 |
if img.endswith(image_extensions):
|
| 86 |
img = Image.open(img).convert("RGB")
|
| 87 |
image_list.append(img)
|
| 88 |
|
| 89 |
+
elif img.endswith(video_extensions):
|
| 90 |
+
video_list.append(sample_frames(img, 7))
|
| 91 |
+
#for frame in sample_frames(img, 6):
|
| 92 |
+
#video_list.append(frame)
|
| 93 |
+
|
| 94 |
+
image_tokens = ""
|
| 95 |
+
video_tokens = ""
|
| 96 |
|
| 97 |
+
if image_list != []:
|
| 98 |
+
image_tokens = "<image>" * len(image_list)
|
| 99 |
+
if video_list != []:
|
| 100 |
+
|
| 101 |
+
toks = len(video_list)
|
| 102 |
+
video_tokens = "<video>" * toks
|
| 103 |
+
|
| 104 |
+
|
| 105 |
|
| 106 |
+
prompt = f"USER: {image_tokens}{video_tokens} {user_prompt} ASSISTANT:"
|
| 107 |
|
| 108 |
+
if image_list != [] and video_list != []:
|
| 109 |
+
inputs = processor(text=prompt, images=image_list, videos=video_list, padding=True, return_tensors="pt").to("cuda",torch.float16)
|
| 110 |
+
elif image_list != [] and video_list == []:
|
| 111 |
+
inputs = processor(text=prompt, images=image_list, padding=True, return_tensors="pt").to("cuda", torch.float16)
|
| 112 |
+
elif image_list == [] and video_list != []:
|
| 113 |
+
inputs = processor(text=prompt, videos=video_list, padding=True, return_tensors="pt").to("cuda", torch.float16)
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
streamer = TextIteratorStreamer(processor, **{"max_new_tokens": 200, "skip_special_tokens": True, "clean_up_tokenization_spaces":True})
|
| 117 |
+
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=200)
|
| 118 |
generated_text = ""
|
| 119 |
|
| 120 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
|
|
|
| 126 |
for new_text in streamer:
|
| 127 |
|
| 128 |
buffer += new_text
|
| 129 |
+
print("new_text", new_text)
|
| 130 |
+
#generated_text_without_prompt = buffer[len(ext_buffer):][:-1]
|
| 131 |
time.sleep(0.01)
|
| 132 |
+
yield buffer #generated_text_without_prompt
|
| 133 |
|
| 134 |
|
| 135 |
demo = gr.ChatInterface(fn=bot_streaming, title="LLaVA Onevision", examples=[
|