File size: 4,509 Bytes
cef9e84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import torch
import numpy as np
import librosa.util as librosa_util
from scipy.signal import get_window
from src.tools.torch_utils import random_uniform
from scipy.io.wavfile import write

def window_sumsquare(
    window,
    n_frames,
    hop_length,
    win_length,
    n_fft,
    dtype=np.float32,
    norm=None,
):
    """
    # from librosa 0.6
    Compute the sum-square envelope of a window function at a given hop length.

    This is used to estimate modulation effects induced by windowing
    observations in short-time fourier transforms.

    Parameters
    ----------
    window : string, tuple, number, callable, or list-like
        Window specification, as in `get_window`

    n_frames : int > 0
        The number of analysis frames

    hop_length : int > 0
        The number of samples to advance between frames

    win_length : [optional]
        The length of the window function.  By default, this matches `n_fft`.

    n_fft : int > 0
        The length of each analysis frame.

    dtype : np.dtype
        The data type of the output

    Returns
    -------
    wss : np.ndarray, shape=`(n_fft + hop_length * (n_frames - 1))`
        The sum-squared envelope of the window function
    """
    if win_length is None:
        win_length = n_fft

    n = n_fft + hop_length * (n_frames - 1)
    x = np.zeros(n, dtype=dtype)

    # Compute the squared window at the desired length
    win_sq = get_window(window, win_length, fftbins=True)
    win_sq = librosa_util.normalize(win_sq, norm=norm) ** 2
    win_sq = librosa_util.pad_center(win_sq, n_fft)

    # Fill the envelope
    for i in range(n_frames):
        sample = i * hop_length
        x[sample : min(n, sample + n_fft)] += win_sq[: max(0, min(n_fft, n - sample))]
    return x


def griffin_lim(magnitudes, stft_fn, n_iters=30):
    """
    PARAMS
    ------
    magnitudes: spectrogram magnitudes
    stft_fn: STFT class with transform (STFT) and inverse (ISTFT) methods
    """

    angles = np.angle(np.exp(2j * np.pi * np.random.rand(*magnitudes.size())))
    angles = angles.astype(np.float32)
    angles = torch.autograd.Variable(torch.from_numpy(angles))
    signal = stft_fn.inverse(magnitudes, angles).squeeze(1)

    for i in range(n_iters):
        _, angles = stft_fn.transform(signal)
        signal = stft_fn.inverse(magnitudes, angles).squeeze(1)
    return signal


def dynamic_range_compression(x, normalize_fun=torch.log, C=1, clip_val=1e-5):
    """
    PARAMS
    ------
    C: compression factor
    """
    return normalize_fun(torch.clamp(x, min=clip_val) * C)


def dynamic_range_decompression(x, C=1):
    """
    PARAMS
    ------
    C: compression factor used to compress
    """
    return torch.exp(x) / C


def frequency_masking(self, log_mel_spec, freqm):
    bs, freq, tsteps = log_mel_spec.size()
    mask_len = int(random_uniform(freqm // 8, freqm))
    mask_start = int(random_uniform(start=0, end=freq - mask_len))
    log_mel_spec[:, mask_start : mask_start + mask_len, :] *= 0.0
    return log_mel_spec

def time_masking(self, log_mel_spec, timem):
    bs, freq, tsteps = log_mel_spec.size()
    mask_len = int(random_uniform(timem // 8, timem))
    mask_start = int(random_uniform(start=0, end=tsteps - mask_len))
    log_mel_spec[:, :, mask_start : mask_start + mask_len] *= 0.0
    return log_mel_spec

def get_mel_from_wav(audio, _stft):
    audio = torch.clip(torch.FloatTensor(audio).unsqueeze(0), -1, 1)
    audio = torch.autograd.Variable(audio, requires_grad=False)
    melspec, magnitudes, phases, energy = _stft.mel_spectrogram(audio)
    melspec = torch.squeeze(melspec, 0).numpy().astype(np.float32)
    magnitudes = torch.squeeze(magnitudes, 0).numpy().astype(np.float32)
    energy = torch.squeeze(energy, 0).numpy().astype(np.float32)
    return melspec, magnitudes, energy


def inv_mel_spec(mel, out_filename, _stft, griffin_iters=60):
    mel = torch.stack([mel])
    mel_decompress = _stft.spectral_de_normalize(mel)
    mel_decompress = mel_decompress.transpose(1, 2).data.cpu()
    spec_from_mel_scaling = 1000
    spec_from_mel = torch.mm(mel_decompress[0], _stft.mel_basis)
    spec_from_mel = spec_from_mel.transpose(0, 1).unsqueeze(0)
    spec_from_mel = spec_from_mel * spec_from_mel_scaling

    audio = griffin_lim(
        torch.autograd.Variable(spec_from_mel[:, :, :-1]), _stft._stft_fn, griffin_iters
    )

    audio = audio.squeeze()
    audio = audio.cpu().numpy()
    audio_path = out_filename
    write(audio_path, _stft.sampling_rate, audio)