File size: 42,299 Bytes
cef9e84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
import os
import pandas as pd
from librosa.filters import mel as librosa_mel_fn
import random
from torch.utils.data import Dataset
import torch.nn.functional
import torch
import numpy as np
import torchaudio
from moviepy.editor import VideoFileClip
from torchvision import transforms as T
import src.utilities.audio as Audio
import numpy as np
from torch.utils.data.dataloader import default_collate
import shutil
import re
from src.tools.io import load_file, write_json, load_json
from src.tools.torch_utils import spectral_normalize_torch, random_uniform
from src.tools.training_utils import build_dataset_json_from_list
import gc
import librosa
import threading

class VideoAudioDataset(Dataset):
    def __init__(
        self,
        config=None,
        load_video=True,
        load_audio=True,
        keep_audio_files=True,
        video_transform=None,
        target_frame_cnt=10,
        split="train",
        waveform_only=False,
        add_ons=[],
        dataset_json=None,
        sample_single_caption=True,
        augment_p=0.0,
        limit_data_percentage = None,
        cache_dir=None
    ):
        """
        Dataset that manages audio recordings
        :param audio_conf: Dictionary containing the audio loading and preprocessing settings
        :param dataset_json_file
        """
        self.target_frame_cnt = target_frame_cnt
        self.config = config
        self.split = split
        self.pad_wav_start_sample = 0  # If none, random choose
        self.load_video = load_video
        self.load_audio = load_audio
        self.keep_audio_files = keep_audio_files
        self.sample_single_caption = sample_single_caption
        self.limit_data_percentage = config['data'].get('limit_data_percentage', False) 
        self.trim_wav = False
        self.waveform_only = waveform_only
        self.augment_p = augment_p
        self.add_ons = [eval(x) for x in add_ons]
        self.consistent_start_time = config['data'].get('consistent_start_time', False)
        
        self.cache_dir = config['data'].get('cache_dir', None)
        if self.cache_dir is not None:
            os.makedirs(self.cache_dir, exist_ok=True)
        
        print("[INFO] Add-ons:", self.add_ons)
        self.obtained_samples = 0

        # transforms
        if video_transform is None:
            video_transform = T.Compose(
                [
                    # T, H, W, C
                    T.ToTensor()
                ]
            )
        self.video_transform = video_transform
        self.build_setting_parameters()

        # For an external dataset
        if dataset_json is not None:
            self.data = dataset_json["data"]
            self.dataset_name = "TEST"
            self.id2label, self.index_dict, self.num2label = {}, {}, {}
        else:
            self.metadata_root = load_json(self.config['data']["metadata_root"])
            self.dataset_name = self.config["data"][self.split]
            assert split in self.config["data"].keys(), (
                "The dataset split %s you specified is not present in the config. You can choose from %s"
                % (split, self.config["data"].keys())
            )
            self.retrieve_paths()
            
        
        if split=='train' and self.limit_data_percentage:
            print(f"[INFO] limiting data to only {self.limit_data_percentage} of the total data {len(self.data)}")
            num_datapoints = int(len(self.data) * self.limit_data_percentage)
            
            # fix the seed to make sure we select the same data.
            np.random.seed(42)
            selected_idx = np.random.randint(0, len(self.data), size=num_datapoints)
            
            # select 
            self.video_json_paths = np.asarray(self.video_json_paths)[selected_idx]
            self.data = np.asarray(self.data)[selected_idx]
            self.datasets_of_datapoints = np.asarray(self.datasets_of_datapoints)[selected_idx]

        self.build_dsp()
        
        if 'keys_synonyms' in config['data']:
            self.keys_synonyms = config['data']['keys_synonyms']
        else:
            self.keys_synonyms = {
                "gt_audio_caption": ["audiocaps_gt_captions", "gt_audio_caption",  "caption", "gt_caption", "gt_captions", 'best_model_w_meta_pred_caption',  "wavcaps_caption"], 
                "tags": ["keywords", "tags"], 
            }
        print("[INFO] Dataset initialize finished")

    def filter_text(self, text):
        filtered_text = re.sub(r'[^\x00-\x7F\u00A0-\u00FF]+', '', text).strip()
        return filtered_text

    def get_data_from_keys(self, data, key, default_value=None):
        """
        Check for each possible key and return the value if found
        """
        if key not in self.keys_synonyms:
            return data.get(key, default_value)
        possible_keys = self.keys_synonyms[key]
        for key in possible_keys:
            if key in data:
                return data[key]
        return default_value  # Or return a default value if none of the keys are found
    
    
    def default_sample(self):
        data = {
                "dataset_name": "UNK",
                "json_path": "UNK",
                "fname": "UNK",  # list
                "waveform": "" if (not self.load_audio) else torch.zeros(1, int(self.sampling_rate * self.duration)),
                # "waveform": torch.zeros(1, int(self.sampling_rate * self.duration)),
                # tensor, [batchsize, t-steps, f-bins]
                "stft": "" if self.waveform_only else torch.zeros(int(self.duration * 100), 512),
                # tensor, [batchsize, t-steps, mel-bins]
                "log_mel_spec": "" if self.waveform_only else torch.zeros(int(self.duration * 100), 64),
                "duration": self.duration,
                "sampling_rate": self.sampling_rate,
                "random_start_sample_in_original_audio_file": -1,
                "labels": "UNK",

                # # video 
                "frames": "",
                
                # additional meta data
                "title": "UNK",
                "url": "UNK",
                "description": "UNK",
                "original_captions": "UNK",
                "automatic_captions": "UNK",
                "gt_audio_caption": "UNK" if self.sample_single_caption else ["UNK"] * 5,
                "video_caption": "UNK",
                "videollama_caption": "UNK",
                "text": "UNK" if self.sample_single_caption else ["UNK"] * 5
            }
            
        return data
        
    def __getitem__(self, index, augment=True):
        
        retries = 0
        max_retries = 1
        
        while retries < max_retries:
            try:
                if '.json' in self.data[index]:
                    dataset_name = self.datasets_of_datapoints[index]
                    absolute_file_path = self._relative_path_to_absolute_path([self.data[index]], dataset_name)[0]
                    if not os.path.exists(absolute_file_path):
                        print(f"file {absolute_file_path} does not exists. Retying..")
                        index = random.randint(0, len(self.data) - 1)
                        retries += 1
                        continue
                else:
                    dataset_name = absolute_file_path = ""
                    
                (
                    index,
                    fname,
                    video_frames,
                    waveform,
                    stft,
                    log_mel_spec,
                    _,  # the one-hot representation of the audio class
                    (datum, mix_datum),
                    random_start,
                ) = self.feature_extraction(index)
                
                data = {
                    "dataset_name": dataset_name,
                    "json_path": absolute_file_path,
                    "fname": fname,  # list
                    "waveform": "" if (not self.load_audio) else waveform.float(),
                    # tensor, [batchsize, t-steps, f-bins]
                    "stft": "" if (stft is None) else stft.float(),
                    # tensor, [batchsize, t-steps, mel-bins]
                    "log_mel_spec": "" if (log_mel_spec is None) else log_mel_spec.float(),
                    "duration": self.duration,
                    "sampling_rate": self.sampling_rate,
                    "random_start_sample_in_original_audio_file": -1 if random_start is None else random_start,
                    "labels": ', '.join(datum.get('labels', [])),

                    # # video 
                    "frames": video_frames if self.load_video else "",
                    
                    # additional meta data
                    "title": self.filter_text(datum.get('title', '')),
                    "url": self.filter_text(datum.get('url', '')),
                    "description": self.filter_text(self.get_sample_description(datum)),
                    "original_captions": self.filter_text(datum.get('original_captions', '')),
                    "automatic_captions": self.filter_text(datum.get('automatic_captions', '')),
                    "gt_audio_caption": self.get_sample_caption(datum, index=index),
                    "video_caption": datum.get('panda70m_caption_0000', '').replace("<unk>", "").strip(),
                    "videollama_caption": datum.get('videollama_caption_0000', ''),
                }
                
                # select one caption if multiple exists
                if isinstance(data['gt_audio_caption'], list) and len(data['gt_audio_caption']) > 0 and self.sample_single_caption:
                    idx = np.random.randint(len(data['gt_audio_caption']))
                    data['gt_audio_caption'] = data['gt_audio_caption'][idx]

                
                for add_on in self.add_ons:
                    data.update(add_on(self.config, data, self.data[index]))
                
                # augment data
                if augment and np.random.rand() < self.augment_p:
                    data = self.pair_augmentation(data)
                
                data['text'] = data['gt_audio_caption']
                
                self.obtained_samples += 1
                
                if self.obtained_samples % 20 == 0:
                    gc.collect()
                return data
            except Exception as e:
                if '.json' in self.data[index]:
                    dataset_name = self.datasets_of_datapoints[index]
                    file_path = self._relative_path_to_absolute_path([self.data[index]], dataset_name)[0]
                else:
                    file_path = ""
                    
                index = random.randint(0, len(self.data) - 1)
                retries += 1
                print("[ERROR, videoaudio_dataset] error while loading", file_path,  e)
                continue
        return self.default_sample()

    def text_to_filename(self, text):
        return text.replace(" ", "_").replace("'", "_").replace('"', "_")

    def get_dataset_root_path(self, dataset):
        assert dataset in self.metadata_root.keys()
        return self.metadata_root[dataset]

    def get_dataset_metadata_path(self, dataset, key):
        # key: train, test, val, class_label_indices
        try:
            if dataset in self.metadata_root["metadata"]["path"].keys():
                return self.metadata_root["metadata"]["path"][dataset][key]
        except KeyError as e:
            print("Error:", e)
            raise ValueError(
                '[ERROR, videoaudio_dataset] Dataset %s does not metadata "%s" specified' % (dataset, key)
            )

    def __len__(self):
        return len(self.data)
    
    def replace_extension(self, path, new_ext):
        return f"{'/'.join(path.split('.')[:-1])}.{new_ext}"
    
    
    def feature_extraction(self, index):
        # Read wave file and extract feature
        if isinstance(self.data[index], str) and '.json' in self.data[index]:
            dataset_name = self.datasets_of_datapoints[index]
            file_path = self._relative_path_to_absolute_path([self.data[index]], dataset_name)[0]
            datum = load_json(file_path)
        else:
            datum = self.data[index]

        if 'path' in datum and datum['path']:
            datum['path'] = self._relative_path_to_absolute_path([datum['path']], dataset_name)[0]

        if 'wav' in datum and datum['wav']:
            datum['wav'] = self._relative_path_to_absolute_path([datum['wav']], dataset_name)[0]

        
        random_start = None
        log_mel_spec, stft, waveform, frames = None, None, None, None
        audio_file = None

        if self.load_audio and not ('wav' in datum.keys() and os.path.exists(datum['wav'])):
            # assume that a .wav file exists in the same location as the .json file
            wav_path = self.replace_extension(file_path, 'wav')
            flac_path = self.replace_extension(file_path, 'flac')
            if os.path.exists(wav_path):
                datum['wav'] = wav_path
            elif os.path.exists(flac_path):
                datum['wav'] = flac_path
            elif 'wav' in datum:
                del datum['wav']

        # cache wav file: useful when there exists a local memory the is faster to do read operations on it
        if self.load_audio and 'wav' in datum and self.cache_dir is not None:
            target_audio_file_path = f"{self.cache_dir}{datum['wav']}"
            if not os.path.exists(target_audio_file_path):
                os.makedirs(os.path.dirname(target_audio_file_path), exist_ok=True)
                shutil.copy2(datum['wav'] , target_audio_file_path)
            
            # update
            datum['wav'] = target_audio_file_path
        
        save_random_start = False 
        random_start = None
        if self.consistent_start_time: # always sample from the same start time
            if 'random_start_t' in datum:
                random_start = datum.get('random_start_t', None)
                save_random_start = False
            else:
                save_random_start = True
        
        # load audio
        if self.load_audio:
            if 'wav' in datum: 
                (
                    log_mel_spec,
                    stft,
                    waveform,
                    random_start,
                ) = self.read_audio_file(datum["wav"], random_start=random_start)
                
                
                waveform = torch.FloatTensor(waveform)
                
                
                
            
            else:
                (
                    frames,
                    log_mel_spec,
                    stft,
                    waveform,
                    random_start,
                    audio_file
                ) = self.read_video_file(datum["path"], random_start=random_start, load_audio=True)
                waveform = torch.FloatTensor(waveform)

            # load video
            if self.load_video and 'path' in datum:
                (frames, _, _, _, _, _ ) = self.read_video_file(datum["path"], random_start=random_start, load_audio=self.load_audio and waveform is None)
        
        elif self.load_video and 'path' in datum:
            (   
                frames,
                log_mel_spec,
                stft,
                waveform,
                random_start,
                audio_file
            ) = self.read_video_file(datum["path"], random_start=random_start, load_audio=True)
            waveform = torch.FloatTensor(waveform)
        
        if audio_file is not None:
            # update json to include path to audio. Only effective if keep_audio_file is enabled
            updated_json = load_json(file_path)
            updated_json['wav'] = self._absolute_path_to_relative_path([audio_file], dataset_name)[0]
            datum["wav"] = updated_json['wav']
            updated_json['random_start_t'] = random_start
            # write_json(updated_json, file_path)

        elif save_random_start and random_start is not None:
            # update json to include the randomly sampled start time for future experiments
            updated_json = load_json(file_path)
            updated_json['random_start_t'] = random_start
            write_json(updated_json, file_path)

        mix_datum = None
        if self.load_video:
            assert frames.shape == (3, self.target_frame_cnt, self.frame_width, self.frame_height)
        

        # The filename of the wav file
        fname = datum["path"] if 'path' in datum and self.load_video else datum.get('wav', '')
        
        if not fname:
            fname = datum['fname']
            
        
        return (
            index,
            fname,
            frames,
            waveform,
            stft,
            log_mel_spec,
            None,
            (datum, mix_datum),
            random_start,
        )
        
    def combine_captions(self, caption1, caption2, remove_duplicates=False, background=False):
        """
        Useful function to combine two caption when doing mixup augmentation
        """
        words1 = caption1.split()
        words2 = caption2.split()

        seen = set(words1)
        combined_words = words1.copy()
        combined_words.append('and')

        for word in words2:
            if word not in seen or (not remove_duplicates):
                combined_words.append(word)
                seen.add(word)  # Add to set to keep track of seen words
    
        combined_caption = " ".join(combined_words)

        if background:
            combined_caption += " in the background"
        return combined_caption

    def pair_augmentation(self, batch):
        """
        Mixup augmentation function that combines two audio at different weight, such that one audio is considered to be a background sound.
        """
        # load a random audio
        idx = np.random.randint(0, self.__len__())
        second_data = self.__getitem__(idx, augment=False)
        
        if np.random.randint(0, 2):
            ratio = 0.2 + np.random.rand() * 0.2
        else:
            ratio = 0.5

        batch['waveform'] = ((1 - ratio) * batch['waveform'] + ratio * second_data['waveform'])
        batch['gt_audio_caption'] =  self.combine_captions(batch['gt_audio_caption'], second_data['gt_audio_caption'], background=(ratio!=0.5))
        batch['panda_caption'] = f"{batch['panda_caption']} and {second_data['panda_caption']}"
        batch['description'] = f"{batch['description']} and {second_data['description']}"
        return batch


    def build_setting_parameters(self):
        # Read from the json config
        self.melbins = self.config["preprocessing"]["mel"]["n_mel_channels"]
        self.sampling_rate = self.config["preprocessing"]["audio"]["sampling_rate"]
        self.hopsize = self.config["preprocessing"]["stft"]["hop_length"]
        self.duration = self.config["preprocessing"]["audio"]["duration"]
        self.target_length = int(self.duration * self.sampling_rate / self.hopsize)

    def merge_paths(self, path1, path2):
        parts1 = path1.split('/')
        parts2 = path2.split('/')
        
        common_part = None
        for i, part in enumerate(parts1):
            if parts1[i:] == parts2[:len(parts1)-i]:
                common_part = i
                break
        
        if common_part is not None:
            merged_path = '/'.join(parts1[:common_part] + parts2)
        else:
            # no common part, simply concatenate
            merged_path = '/'.join([path1, path2])

        return merged_path
    
    def _relative_path_to_absolute_path(self, paths, dataset_name):
        root_path = self.get_dataset_root_path(dataset_name)
        for i, path in enumerate(paths):
            assert path[0] != "/", (
                "The dataset metadata should only contain relative path to the json file: "
                + str(path)
            )
            merged_path = self.merge_paths(
                root_path, path
            )
            if not os.path.exists(merged_path):
                merged_path = self.merge_paths(root_path, path.split('/')[-1])

            paths[i] = merged_path
        return paths

    def _absolute_path_to_relative_path(self, paths, dataset_name):
        root_path = self.get_dataset_root_path(dataset_name)
        for i, path in enumerate(paths):
            assert path[0] == "/", (
                "the json file should be absolute: "
                + str(path)
            )
            paths[i] = os.path.relpath(path, root_path)
        return paths

    def retrieve_paths(self):
        self.video_json_paths = []
        self.data = []
        self.datasets_of_datapoints = []
        print("[INFO] Build dataset split %s from %s" % (self.split, self.dataset_name))
        if type(self.dataset_name) is str:
            video_paths_list = load_file(
                self.get_dataset_metadata_path(self.dataset_name, key=self.split)
            )
            self.video_json_paths = video_paths_list
            self.datasets_of_datapoints = [self.dataset_name] * len(video_paths_list)
        
        elif type(self.dataset_name) is list:
            for dataset_name in self.dataset_name:
                video_paths_list = load_file(
                    self.get_dataset_metadata_path(dataset_name, key=self.split)
                )
                self.datasets_of_datapoints += [dataset_name] * len(video_paths_list)
                self.video_json_paths += video_paths_list
        else:
            raise Exception("[ERROR, videoaudio_dataset] Invalid data format:", type(self.dataset_name))

        self.data = self.video_json_paths
        print("[INFO] Data size: {}".format(len(self.data)))

        return self.data
    
    def build_dsp(self):
        self.mel_basis = {}
        self.hann_window = {}

        self.filter_length = self.config["preprocessing"]["stft"]["filter_length"]
        self.hop_length = self.config["preprocessing"]["stft"]["hop_length"]
        self.win_length = self.config["preprocessing"]["stft"]["win_length"]
        self.n_mel = self.config["preprocessing"]["mel"]["n_mel_channels"]
        self.sampling_rate = self.config["preprocessing"]["audio"]["sampling_rate"]
        self.mel_fmin = self.config["preprocessing"]["mel"]["mel_fmin"]
        self.mel_fmax = self.config["preprocessing"]["mel"]["mel_fmax"]
        
        # video
        self.video_fps = self.config["preprocessing"]["video"]["fps"]
        self.frame_height = self.config["preprocessing"]["video"]["height"]
        self.frame_width = self.config["preprocessing"]["video"]["width"]

        if not self.waveform_only:
            self.STFT = Audio.stft.TacotronSTFT(
                self.config["preprocessing"]["stft"]["filter_length"],
                self.config["preprocessing"]["stft"]["hop_length"],
                self.config["preprocessing"]["stft"]["win_length"],
                self.config["preprocessing"]["mel"]["n_mel_channels"],
                self.config["preprocessing"]["audio"]["sampling_rate"],
                self.config["preprocessing"]["mel"]["mel_fmin"],
                self.config["preprocessing"]["mel"]["mel_fmax"],
            )

    def build_id_to_label(self):
        id2label = {}
        id2num = {}
        num2label = {}
        class_label_indices_path = self.get_dataset_metadata_path(
            dataset=self.config["data"]["class_label_indices"],
            key="class_label_indices",
        )
        if class_label_indices_path is not None:
            df = pd.read_csv(class_label_indices_path)
            for _, row in df.iterrows():
                index, mid, display_name = row["index"], row["mid"], row["display_name"]
                id2label[mid] = display_name
                id2num[mid] = index
                num2label[index] = display_name
            self.id2label, self.index_dict, self.num2label = id2label, id2num, num2label
        else:
            self.id2label, self.index_dict, self.num2label = {}, {}, {}

    def resample_wav(self, waveform, sr):
        waveform = torchaudio.functional.resample(waveform, sr, self.sampling_rate)
        return waveform

    def normalize_wav(self, waveform):
        waveform = waveform - np.mean(waveform)
        waveform = waveform / (np.max(np.abs(waveform)) + 1e-8)
        return waveform * 0.5  # Manually limit the maximum amplitude into 0.5

    def random_segment_wav(self, waveform, target_length, random_start=None):
        waveform_length = waveform.shape[-1]
        assert waveform_length > 100, "Waveform is too short, %s" % waveform_length

        # Too short
        if (waveform_length - target_length) <= 0:
            return waveform, 0

        if random_start is None:
            for i in range(10):
                random_start = int(random_uniform(0, waveform_length - target_length))
                if torch.max(
                    torch.abs(waveform[:, random_start : random_start + target_length])
                    > 1e-4
                ):
                    break

        return waveform[:, random_start : random_start + target_length], random_start

    def pad_wav(self, waveform, target_length):
        waveform_length = waveform.shape[-1]
        assert waveform_length > 100, "Waveform is too short, %s" % waveform_length

        if waveform_length == target_length:
            return waveform

        # Pad
        temp_wav = np.zeros((1, target_length), dtype=np.float32)
        if self.pad_wav_start_sample is None:
            rand_start = int(random_uniform(0, target_length - waveform_length))
        else:
            rand_start = 0

        temp_wav[:, rand_start : rand_start + waveform_length] = waveform
        return temp_wav

    def trim_wav(self, waveform):
        if np.max(np.abs(waveform)) < 0.0001:
            return waveform

        def detect_leading_silence(waveform, threshold=0.0001):
            chunk_size = 1000
            waveform_length = waveform.shape[0]
            start = 0
            while start + chunk_size < waveform_length:
                if np.max(np.abs(waveform[start : start + chunk_size])) < threshold:
                    start += chunk_size
                else:
                    break
            return start

        def detect_ending_silence(waveform, threshold=0.0001):
            chunk_size = 1000
            waveform_length = waveform.shape[0]
            start = waveform_length
            while start - chunk_size > 0:
                if np.max(np.abs(waveform[start - chunk_size : start])) < threshold:
                    start -= chunk_size
                else:
                    break
            if start == waveform_length:
                return start
            else:
                return start + chunk_size

        start = detect_leading_silence(waveform)
        end = detect_ending_silence(waveform)
        return waveform[start:end]

    
    def process_wavform(self, waveform, sr):
        waveform = self.resample_wav(waveform, sr)
        waveform = waveform.numpy()[0, ...]

        waveform = self.normalize_wav(waveform)

        if self.trim_wav:
            waveform = self.trim_wav(waveform)

        waveform = waveform[None, ...]
        waveform = self.pad_wav(
            waveform, target_length=int(self.sampling_rate * self.duration)
        )
        return waveform


    def load_audio_with_timeout(self, file_path, timeout):
        """
        Load an audio file with a specified timeout using threading.

        :param file_path: Path to the audio file.
        :param timeout: Maximum time (in seconds) to allow for loading the file.
        :return: (waveform, sample_rate) if successful, None if timeout occurs.
        """
        class AudioLoader(threading.Thread):
            def __init__(self, file_path):
                super().__init__()
                self.file_path = file_path
                self.result = None

            def run(self):
                try:
                    waveform, sample_rate = torchaudio.load(self.file_path)
                    self.result = (waveform, sample_rate)
                except Exception as e:
                    print(f"Failed to load audio: {e}")
                    self.result = None

        # Start the thread
        audio_loader = AudioLoader(file_path)
        audio_loader.start()

        # Wait for the thread to complete or timeout
        audio_loader.join(timeout=timeout)
        if audio_loader.is_alive():
            print(f"Timeout while loading {file_path}")
            return None, None  # Timeout case

        return audio_loader.result


    def read_wav_file(self, filename, random_start=None):
        # waveform, sr = librosa.load(filename, sr=None, mono=True) # 4 times slower
        waveform, sr = self.load_audio_with_timeout(filename, timeout=10)
        if waveform is None:
            print("[INFO] timeout when loading the audio")
            # # # TODO Important, dummy audio
            waveform = torch.zeros(1, int(self.sampling_rate * self.duration))
            sr = 16000
        
        waveform, random_start = self.random_segment_wav(
            waveform, target_length=int(sr * self.duration), random_start=random_start
        )
        waveform = self.process_wavform(waveform, sr)

        return waveform, random_start

    def read_mp4_file(self, filename, random_start=None, load_audio=True):
        video = VideoFileClip(filename)
        video = video.resize(newsize=(self.frame_width, self.frame_height))
        audio = video.audio

        # audio part
        waveform = None
        tmp_audio_file = None
        
        if load_audio:
            tmp_audio_file = f"{filename[:-4]}.wav"
            audio.write_audiofile(tmp_audio_file, codec='pcm_s16le', fps=self.sampling_rate, nbytes=2, ffmpeg_params=["-ac", "1"])
            waveform, sr = torchaudio.load(tmp_audio_file, format='wav')

            if not self.keep_audio_files: # keep the audio file and save its path in the json file
                os.remove(tmp_audio_file)
                tmp_audio_file = None
            
            # random segment
            waveform, random_start = self.random_segment_wav(
                waveform, target_length=int(sr * self.duration), random_start=random_start
            )
            random_start_sec = random_start / sr
            waveform = self.process_wavform(waveform, sr)

        else:
            random_start_sec = random_start / self.sampling_rate
        
        # video part    
        frames = []
        if self.load_video:
            interval = 1 / self.video_fps
            current_time = random_start_sec

            # assuming fixed fps
            while current_time <= video.duration and len(frames) < self.target_frame_cnt:
                frame = video.get_frame(current_time)
                frames.append(frame) # T x H x W x C
                current_time += interval

            # transform frames
            frames = torch.from_numpy(np.stack(frames[:self.target_frame_cnt]))
            frames = frames.permute(3, 0, 1, 2).float()  # (C, T, H, W)
            frames = self.video_transform.transform(frames)

        return frames, waveform, random_start, tmp_audio_file

    def read_video_file(self, filename, load_audio=True, random_start=None):
        if os.path.exists(filename):
            frames, waveform, random_start, audio_file = self.read_mp4_file(filename, load_audio=load_audio, random_start=random_start)

            # frames C x T x H x W
            if frames and frames.shape[1] < self.target_frame_cnt:
                extra_frames = torch.zeros((frames.shape[0],  self.target_frame_cnt - frames.shape[1], frames.shape[2], frames.shape[3]))
                frames = torch.cat([frames, extra_frames], dim=1)
        else:
            print(
                '[WARNING, videoaudio_dataset] The path "',
                filename,
                '" is not find in the metadata. Use empty video instead. This is normal in the inference process.',
            )
            target_wavform_length = int(self.sampling_rate * self.duration)
            waveform = torch.zeros((1, target_wavform_length))
            frames = torch.zeros((3, self.target_frame_cnt, self.frame_height, self.frame_width))

            random_start = 0
            audio_file = None

        if load_audio and not self.waveform_only:
            log_mel_spec, stft = self.wav_feature_extraction(waveform)
        else:
            # Load waveform data only
            # Use zero array to keep the format unified
            log_mel_spec, stft = None, None

        return frames, log_mel_spec, stft, waveform, random_start, audio_file
    
    def read_audio_file(self, filename, random_start=None):
        if os.path.exists(filename):
            waveform, random_start = self.read_wav_file(filename, random_start=random_start)
        else:
            print(
                'Non-fatal Warning [dataset.py]: The wav path "',
                filename,
                '" is not find in the metadata. Use empty waveform instead. This is normal in the inference process.',
            )
            target_length = int(self.sampling_rate * self.duration)
            waveform = torch.zeros((1, target_length))
            random_start = 0

        if not self.waveform_only:
            log_mel_spec, stft = self.wav_feature_extraction(waveform)
        else:
            # Load waveform data only
            # Use zero array to keep the format unified
            log_mel_spec, stft = None, None

        return log_mel_spec, stft, waveform, random_start
    
    def get_sample_caption(self, datum, index):
        """
        Use groundtruth caption if exists, otherwise use a hand crafted caption based on the labels
        """
        caption = self.get_data_from_keys(datum, "gt_audio_caption", [])
        if caption:
            return caption
        
        # covert labels to caption
        labels = self.get_data_from_keys(datum, "labels", [])

        if not labels:
            dataset_name = self.datasets_of_datapoints[index]
            absolute_file_path = self._relative_path_to_absolute_path([self.data[index]], dataset_name)[0]
            print(f"Warning file {absolute_file_path} does not have gt caption")
            return ["Sound"]
        
        if not isinstance(labels, list):
            labels = [labels]

        # process each tag
        def clean_tag(tag):
            # Replace common delimiters with spaces
            for delimiter in [';', '_', '-', ',']:
                tag = tag.replace(delimiter, ' ')
            return tag.strip().lower()  

        unique_keywords = set()
        for tag in labels:
            words = clean_tag(tag).split(' ')
            unique_keywords.update(words)  # Add words to the set, which automatically removes duplicates

        cleaned_labels = list(unique_keywords)
        caption = 'The sound of ' + ', '.join(cleaned_labels[:-1]) + (', and ' + cleaned_labels[-1] + '.') if len(cleaned_labels) > 1 else cleaned_labels[0] + '.'
        return [caption]
    
    def get_sample_description(self, datum):
        """
        Use description from metadata if exists, otherwise use a hand crafted description based on the tags
        """
        if 'description' in datum.keys():
            return datum['description']
        
        # covert tags to description
        tags = self.get_data_from_keys(datum, "tags", [])
        if not tags:
            # print("[INFO] could not find tags for:", datum)
            return ""
        
        if not isinstance(tags, list):
            tags = [tags]

        # process each tag
        def clean_tag(tag):
            # Replace common delimiters with spaces
            for delimiter in [';', '_', '-', ',']:
                tag = tag.replace(delimiter, ' ')
            return tag.strip().lower()  

        unique_keywords = set()
        for tag in tags:
            words = clean_tag(tag).split(' ')
            unique_keywords.update(words)  # Add words to the set, which automatically removes duplicates

        cleaned_tags = list(unique_keywords)
        description = ', '.join(cleaned_tags[:-1]) + ', and ' + cleaned_tags[-1] + '.' if len(cleaned_tags) > 1 else cleaned_tags[0] + '.'
    
        return description


    def mel_spectrogram_train(self, y):
        if torch.min(y) < -1.0:
            print("train min value is ", torch.min(y))
        if torch.max(y) > 1.0:
            print("train max value is ", torch.max(y))

        if self.mel_fmax not in self.mel_basis:
            mel = librosa_mel_fn(
                sr=self.sampling_rate,
                n_fft=self.filter_length,
                n_mels=self.n_mel,
                fmin=self.mel_fmin,
                fmax=self.mel_fmax,
            )
            self.mel_basis[str(self.mel_fmax) + "_" + str(y.device)] = (
                torch.from_numpy(mel).float().to(y.device)
            )
            self.hann_window[str(y.device)] = torch.hann_window(self.win_length).to(
                y.device
            )

        y = torch.nn.functional.pad(
            y.unsqueeze(1),
            (
                int((self.filter_length - self.hop_length) / 2),
                int((self.filter_length - self.hop_length) / 2),
            ),
            mode="reflect",
        )

        y = y.squeeze(1)

        stft_spec = torch.stft(
            y,
            self.filter_length,
            hop_length=self.hop_length,
            win_length=self.win_length,
            window=self.hann_window[str(y.device)],
            center=False,
            pad_mode="reflect",
            normalized=False,
            onesided=True,
            return_complex=True,
        )

        stft_spec = torch.abs(stft_spec)

        mel = spectral_normalize_torch(
            torch.matmul(
                self.mel_basis[str(self.mel_fmax) + "_" + str(y.device)], stft_spec
            )
        )

        return mel[0], stft_spec[0]

    # This one is significantly slower than "wav_feature_extraction_torchaudio" if num_worker > 1
    def wav_feature_extraction(self, waveform):
        waveform = waveform[0, ...]
        waveform = torch.FloatTensor(waveform)

        # log_mel_spec, stft, energy = Audio.tools.get_mel_from_wav(waveform, self.STFT)[0]
        log_mel_spec, stft = self.mel_spectrogram_train(waveform.unsqueeze(0))

        log_mel_spec = torch.FloatTensor(log_mel_spec.T)
        stft = torch.FloatTensor(stft.T)

        log_mel_spec, stft = self.pad_spec(log_mel_spec), self.pad_spec(stft)
        return log_mel_spec, stft

    # @profile
    # def wav_feature_extraction_torchaudio(self, waveform):
    #     waveform = waveform[0, ...]
    #     waveform = torch.FloatTensor(waveform)

    #     stft = self.stft_transform(waveform)
    #     mel_spec = self.melscale_transform(stft)
    #     log_mel_spec = torch.log(mel_spec + 1e-7)

    #     log_mel_spec = torch.FloatTensor(log_mel_spec.T)
    #     stft = torch.FloatTensor(stft.T)

    #     log_mel_spec, stft = self.pad_spec(log_mel_spec), self.pad_spec(stft)
    #     return log_mel_spec, stft

    def pad_spec(self, log_mel_spec):
        n_frames = log_mel_spec.shape[0]
        p = self.target_length - n_frames
        if p > 0:
            m = torch.nn.ZeroPad2d((0, 0, 0, p))
            log_mel_spec = m(log_mel_spec)
        elif p < 0:
            log_mel_spec = log_mel_spec[0 : self.target_length, :]

        if log_mel_spec.size(-1) % 2 != 0:
            log_mel_spec = log_mel_spec[..., :-1]

        return log_mel_spec


def custom_collate_fn(batch):
    
    # for test
    # for k in batch[0].keys():
    #     try:
    #         default_collate([{k:item[k]} for item in batch])
    #     except Exception as e:
    #         print("collect error in key", k)
    #         print("files", [b['fname'] for b in batch])
    #         print("shape", [item[k].shape for item in batch])
    #         print("error", e)
        
    collated_batch = default_collate(batch)

    # Handle the 'captions' manually as needed, here assuming you want to keep them as lists of lists
    collated_batch['gt_audio_caption'] = [item['gt_audio_caption'] for item in batch]

    return collated_batch

if __name__ == "__main__":
    import torch
    from tqdm import tqdm
    from pytorch_lightning import seed_everything
    from torch.utils.data import DataLoader
    from src.tools.configuration import Configuration
    
    model_config = "settings/simple_runs/genau.yaml"
    config = Configuration(model_config)
    config = config.get_config()

    seed_everything(20)
    
    dataset = VideoAudioDataset(
        config=config, split="train", waveform_only=False,
        load_video=False, sample_single_caption=True, augment_p=1.0)
    
    print("[INFO] Dataset len:", len(dataset))
    loader = DataLoader(dataset, batch_size=64, num_workers=0, shuffle=True, collate_fn=custom_collate_fn)
    
    # # test augmentation on a single audio 
    # audio_1 = dataset.__getitem__(0, augment=False)
    # aug_audio_1 = dataset.__getitem__(1, augment=True)
    # aug_audio_2 = dataset.__getitem__(2, augment=True)

    # print("orginal_caption:", audio_1['gt_audio_caption'])
    # print("aug_caption_1:", aug_audio_1['gt_audio_caption'])
    # print("aug_caption_2:", aug_audio_2['gt_audio_caption'])

    # # save audio
    # torchaudio.save("original_audio.wav", audio_1['waveform'], 16000)
    # torchaudio.save("aug_audio_1.wav", aug_audio_1['waveform'], 16000)
    # torchaudio.save("aug_audio_2.wav", aug_audio_2['waveform'], 16000)

    for cnt, each in tqdm(enumerate(loader)):
        print("wav shape:", each['waveform'].shape, flush=True)
        print("log_mel_spec shape:", each['log_mel_spec'].shape, flush=True)
        print("names:", each['fname'], flush=True)
        break

    
    # Test from dataset_json
    dataset = VideoAudioDataset(
        config=config, 
        split='test',
        dataset_json= build_dataset_json_from_list("tests/captionlist/inference_submission.lst"),
        load_audio=False,
        load_video=False
    )
    # print("Item 0", dataset[0])