genau-demo / GenAU /src /tools /torch_utils.py
Moayed's picture
add demo files
cef9e84
import torch
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
return torch.log(torch.clamp(x, min=clip_val) * C)
def spectral_normalize_torch(magnitudes):
output = dynamic_range_compression_torch(magnitudes)
return output
def random_uniform(start, end):
val = torch.rand(1).item()
return start + (end - start) * val
def print_on_rank0(msg):
if torch.distributed.get_rank() == 0:
print(msg)