Spaces:
Runtime error
Runtime error
| import os | |
| import json | |
| import torch | |
| import numpy as np | |
| import src.modules.hifigan as hifigan | |
| import importlib | |
| import torch | |
| import numpy as np | |
| from collections import abc | |
| import multiprocessing as mp | |
| from threading import Thread | |
| from queue import Queue | |
| from inspect import isfunction | |
| from PIL import Image, ImageDraw, ImageFont | |
| from src.tools.download_manager import get_checkpoint_path | |
| def log_txt_as_img(wh, xc, size=10): | |
| # wh a tuple of (width, height) | |
| # xc a list of captions to plot | |
| b = len(xc) | |
| txts = list() | |
| for bi in range(b): | |
| txt = Image.new("RGB", wh, color="white") | |
| draw = ImageDraw.Draw(txt) | |
| font = ImageFont.truetype("data/DejaVuSans.ttf", size=size) | |
| nc = int(40 * (wh[0] / 256)) | |
| lines = "\n".join( | |
| xc[bi][start : start + nc] for start in range(0, len(xc[bi]), nc) | |
| ) | |
| try: | |
| draw.text((0, 0), lines, fill="black", font=font) | |
| except UnicodeEncodeError: | |
| print("Cant encode string for logging. Skipping.") | |
| txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0 | |
| txts.append(txt) | |
| txts = np.stack(txts) | |
| txts = torch.tensor(txts) | |
| return txts | |
| def ismap(x): | |
| if not isinstance(x, torch.Tensor): | |
| return False | |
| return (len(x.shape) == 4) and (x.shape[1] > 3) | |
| def isimage(x): | |
| if not isinstance(x, torch.Tensor): | |
| return False | |
| return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1) | |
| def int16_to_float32(x): | |
| return (x / 32767.0).astype(np.float32) | |
| def float32_to_int16(x): | |
| x = np.clip(x, a_min=-1.0, a_max=1.0) | |
| return (x * 32767.0).astype(np.int16) | |
| def exists(x): | |
| return x is not None | |
| def default(val, d): | |
| if exists(val): | |
| return val | |
| return d() if isfunction(d) else d | |
| def mean_flat(tensor): | |
| """ | |
| https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86 | |
| Take the mean over all non-batch dimensions. | |
| """ | |
| return tensor.mean(dim=list(range(1, len(tensor.shape)))) | |
| def count_params(model, verbose=False): | |
| total_params = sum(p.numel() for p in model.parameters()) | |
| if verbose: | |
| print(f"{model.__class__.__name__} has {total_params * 1.e-6:.2f} M params.") | |
| return total_params | |
| def instantiate_from_config(config): | |
| if not "target" in config: | |
| if config == "__is_first_stage__": | |
| return None | |
| elif config == "__is_unconditional__": | |
| return None | |
| raise KeyError("Expected key `target` to instantiate.") | |
| return get_obj_from_str(config["target"])(**config.get("params", dict())) | |
| def get_obj_from_str(string, reload=False): | |
| module, cls = string.rsplit(".", 1) | |
| if reload: | |
| module_imp = importlib.import_module(module) | |
| importlib.reload(module_imp) | |
| return getattr(importlib.import_module(module, package=None), cls) | |
| def _do_parallel_data_prefetch(func, Q, data, idx, idx_to_fn=False): | |
| # create dummy dataset instance | |
| # run prefetching | |
| if idx_to_fn: | |
| res = func(data, worker_id=idx) | |
| else: | |
| res = func(data) | |
| Q.put([idx, res]) | |
| Q.put("Done") | |
| def parallel_data_prefetch( | |
| func: callable, | |
| data, | |
| n_proc, | |
| target_data_type="ndarray", | |
| cpu_intensive=True, | |
| use_worker_id=False, | |
| ): | |
| # if target_data_type not in ["ndarray", "list"]: | |
| # raise ValueError( | |
| # "Data, which is passed to parallel_data_prefetch has to be either of type list or ndarray." | |
| # ) | |
| if isinstance(data, np.ndarray) and target_data_type == "list": | |
| raise ValueError("list expected but function got ndarray.") | |
| elif isinstance(data, abc.Iterable): | |
| if isinstance(data, dict): | |
| print( | |
| f'WARNING:"data" argument passed to parallel_data_prefetch is a dict: Using only its values and disregarding keys.' | |
| ) | |
| data = list(data.values()) | |
| if target_data_type == "ndarray": | |
| data = np.asarray(data) | |
| else: | |
| data = list(data) | |
| else: | |
| raise TypeError( | |
| f"The data, that shall be processed parallel has to be either an np.ndarray or an Iterable, but is actually {type(data)}." | |
| ) | |
| if cpu_intensive: | |
| Q = mp.Queue(1000) | |
| proc = mp.Process | |
| else: | |
| Q = Queue(1000) | |
| proc = Thread | |
| # spawn processes | |
| if target_data_type == "ndarray": | |
| arguments = [ | |
| [func, Q, part, i, use_worker_id] | |
| for i, part in enumerate(np.array_split(data, n_proc)) | |
| ] | |
| else: | |
| step = ( | |
| int(len(data) / n_proc + 1) | |
| if len(data) % n_proc != 0 | |
| else int(len(data) / n_proc) | |
| ) | |
| arguments = [ | |
| [func, Q, part, i, use_worker_id] | |
| for i, part in enumerate( | |
| [data[i : i + step] for i in range(0, len(data), step)] | |
| ) | |
| ] | |
| processes = [] | |
| for i in range(n_proc): | |
| p = proc(target=_do_parallel_data_prefetch, args=arguments[i]) | |
| processes += [p] | |
| # start processes | |
| print(f"Start prefetching...") | |
| import time | |
| start = time.time() | |
| gather_res = [[] for _ in range(n_proc)] | |
| try: | |
| for p in processes: | |
| p.start() | |
| k = 0 | |
| while k < n_proc: | |
| # get result | |
| res = Q.get() | |
| if res == "Done": | |
| k += 1 | |
| else: | |
| gather_res[res[0]] = res[1] | |
| except Exception as e: | |
| print("Exception: ", e) | |
| for p in processes: | |
| p.terminate() | |
| raise e | |
| finally: | |
| for p in processes: | |
| p.join() | |
| print(f"Prefetching complete. [{time.time() - start} sec.]") | |
| if target_data_type == "ndarray": | |
| if not isinstance(gather_res[0], np.ndarray): | |
| return np.concatenate([np.asarray(r) for r in gather_res], axis=0) | |
| # order outputs | |
| return np.concatenate(gather_res, axis=0) | |
| elif target_data_type == "list": | |
| out = [] | |
| for r in gather_res: | |
| out.extend(r) | |
| return out | |
| else: | |
| return gather_res | |
| def get_available_checkpoint_keys(model, ckpt): | |
| print("==> Attemp to reload from %s" % ckpt) | |
| state_dict = torch.load(ckpt)["state_dict"] | |
| current_state_dict = model.state_dict() | |
| new_state_dict = {} | |
| for k in state_dict.keys(): | |
| if ( | |
| k in current_state_dict.keys() | |
| and current_state_dict[k].size() == state_dict[k].size() | |
| ): | |
| new_state_dict[k] = state_dict[k] | |
| else: | |
| print("==> WARNING: Skipping %s" % k) | |
| print( | |
| "%s out of %s keys are matched" | |
| % (len(new_state_dict.keys()), len(state_dict.keys())) | |
| ) | |
| return new_state_dict | |
| def get_param_num(model): | |
| num_param = sum(param.numel() for param in model.parameters()) | |
| return num_param | |
| def torch_version_orig_mod_remove(state_dict): | |
| new_state_dict = {} | |
| new_state_dict["generator"] = {} | |
| for key in state_dict["generator"].keys(): | |
| if "_orig_mod." in key: | |
| new_state_dict["generator"][key.replace("_orig_mod.", "")] = state_dict[ | |
| "generator" | |
| ][key] | |
| else: | |
| new_state_dict["generator"][key] = state_dict["generator"][key] | |
| return new_state_dict | |
| def get_vocoder(config, device, mel_bins, ROOT="data/checkpoints"): | |
| if mel_bins == 64: | |
| model_path = os.path.join(ROOT, "hifigan_16k_64bins") | |
| config_model_path = model_path + ".json" | |
| if not os.path.exists(config_model_path): | |
| config_model_path = get_checkpoint_path('hifigan_16k_64bins_config') | |
| with open(config_model_path, "r") as f: | |
| config = json.load(f) | |
| config = hifigan.AttrDict(config) | |
| vocoder = hifigan.Generator(config) | |
| elif mel_bins == 256: | |
| model_path = os.path.join(ROOT, "hifigan_48k_256bins") | |
| with open(model_path + ".json", "r") as f: | |
| config = json.load(f) | |
| config = hifigan.AttrDict(config) | |
| vocoder = hifigan.Generator_HiFiRes(config) | |
| ckpt_model_path = model_path + ".ckpt" | |
| if not os.path.exists(ckpt_model_path): | |
| ckpt_model_path = get_checkpoint_path("hifigan_16k_64bins") | |
| ckpt = torch.load(ckpt_model_path) | |
| ckpt = torch_version_orig_mod_remove(ckpt) | |
| vocoder.load_state_dict(ckpt["generator"]) | |
| vocoder.eval() | |
| vocoder.remove_weight_norm() | |
| vocoder.to(device) | |
| return vocoder | |
| def vocoder_infer(mels, vocoder, lengths=None): | |
| with torch.no_grad(): | |
| wavs = vocoder(mels).squeeze(1) | |
| wavs = (wavs.cpu().numpy() * 32768).astype("int16") | |
| if lengths is not None: | |
| wavs = wavs[:, :lengths] | |
| return wavs | |