File size: 5,198 Bytes
eb5fab4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7bd7965
eb5fab4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
from typing import List
from attr import dataclass

import torch
import numpy as np
from transformers import AutoTokenizer, AutoModelForTokenClassification


def batchify(lst, batch_size):
    last_item_shorter = False
    if len(lst[-1]) < len(lst[0]):
        last_item_shorter = True
        max_index = len(lst)-1
    else:
        max_index = len(lst)

    for i in range(0, max_index, batch_size):
        yield lst[i : min(i + batch_size, max_index)]

    if last_item_shorter:
        yield lst[-1:]


@dataclass
class Token:
    index: int
    start: int
    end: int
    length: int
    decoded_str: str


class ParagraphSplitter:
    def __init__(self, model_id="mamei16/chonky_distilbert_base_uncased_1.1", device="cpu", model_cache_dir: str = None):
        super().__init__()
        self.device = device
        self.is_modernbert = model_id.startswith("mirth/chonky_modernbert") or model_id == "mirth/chonky_mmbert_small_multilingual_1"

        id2label = {
            0: "O",
            1: "separator",
        }
        label2id = {
            "O": 0,
            "separator": 1,
        }

        if self.is_modernbert:
            tokenizer_kwargs = {"model_max_length": 1024}
        else:
            tokenizer_kwargs = {}
        self.tokenizer = AutoTokenizer.from_pretrained(model_id, cache_dir=model_cache_dir, **tokenizer_kwargs)
        self.model = AutoModelForTokenClassification.from_pretrained(
            model_id,
            num_labels=2,
            id2label=id2label,
            label2id=label2id,
            cache_dir=model_cache_dir,
            torch_dtype=torch.float32 if device == "cpu" else torch.float16
        )
        self.model.eval()
        self.model.to(device)

    def split_into_semantic_chunks(self, text, separator_indices: List[int]):
        start_index = 0

        for idx in separator_indices:
            yield text[start_index:idx].strip()
            start_index = idx

        if start_index < len(text):
            yield text[start_index:].strip()

    def __call__(self, text: str) -> List[str]:
        max_seq_len = self.tokenizer.model_max_length
        window_step_size = max_seq_len // 2
        ids_plus = self.tokenizer(text, truncation=True, add_special_tokens=True, return_offsets_mapping=True,
                                  return_overflowing_tokens=True, stride=window_step_size)

        tokens = [[Token(i*max_seq_len+j,
                         offset_tup[0], offset_tup[1],
                         offset_tup[1]-offset_tup[0],
                         text[offset_tup[0]:offset_tup[1]]) for j, offset_tup in enumerate(offset_list)]
                  for i, offset_list in enumerate(ids_plus["offset_mapping"])]

        input_ids = ids_plus["input_ids"]
        all_separator_tokens = []

        batch_size = 4
        for input_id_batch, token_batch in zip(batchify(input_ids, batch_size),
                                               batchify(tokens, batch_size)):
            with torch.no_grad():
                output = self.model(torch.tensor(input_id_batch).to(self.device))

            logits = output.logits.cpu().numpy()
            maxes = np.max(logits, axis=-1, keepdims=True)
            shifted_exp = np.exp(logits - maxes)
            scores = shifted_exp / shifted_exp.sum(axis=-1, keepdims=True)
            token_classes = scores.argmax(axis=-1)
            # Find last index of each sequence of ones in token class sequence
            separator_token_idx_tup = ((token_classes[:, :-1] - token_classes[:, 1:]) > 0).nonzero()

            separator_tokens = [token_batch[i][j] for i, j in zip(*separator_token_idx_tup)]
            all_separator_tokens.extend(separator_tokens)

        flat_tokens = [token for window in tokens for token in window]
        sorted_separator_tokens = sorted(all_separator_tokens, key=lambda x: x.start)
        separator_indices = []
        for i in range(len(sorted_separator_tokens)-1):
            current_sep_token = sorted_separator_tokens[i]
            if current_sep_token.end == 0:
                continue
            next_sep_token = sorted_separator_tokens[i+1]
            # next_token is the token succeeding current_sep_token in the original text
            next_token = flat_tokens[current_sep_token.index+1]

            # If current separator token is part of a bigger contiguous token, move to the end of the bigger token
            while (current_sep_token.end == next_token.start and
                   (not self.is_modernbert or (current_sep_token.decoded_str != '\n'
                                               and not next_token.decoded_str.startswith(' ')))):
                current_sep_token = next_token
                next_token = flat_tokens[current_sep_token.index+1]

            if ((current_sep_token.start + current_sep_token.length) > next_sep_token.start or
                ((next_sep_token.end - current_sep_token.end) <= 1)):
                continue

            separator_indices.append(current_sep_token.end)

        if sorted_separator_tokens:
            separator_indices.append(sorted_separator_tokens[-1].end)

        yield from self.split_into_semantic_chunks(text, separator_indices)