Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,7 +3,13 @@ from modules.parse_pdf import process_pdf
|
|
| 3 |
from modules.classify import classify_text_multi # Importing BERT model classification
|
| 4 |
from modules.RandomForest import classify_text_rf,classify_text_rf_multi #Importing single and multi-label classification
|
| 5 |
from modules.SVM import classify_text_svm,classify_text_svm_multi #Importing single and multi-label classification
|
|
|
|
| 6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
# Function to process and classify PDF using both BERT and Random Forest models
|
| 8 |
def process_and_classify_pdf(file):
|
| 9 |
# Step 1: Process the PDF to extract and clean the text
|
|
|
|
| 3 |
from modules.classify import classify_text_multi # Importing BERT model classification
|
| 4 |
from modules.RandomForest import classify_text_rf,classify_text_rf_multi #Importing single and multi-label classification
|
| 5 |
from modules.SVM import classify_text_svm,classify_text_svm_multi #Importing single and multi-label classification
|
| 6 |
+
import nltk
|
| 7 |
|
| 8 |
+
# Check if the stopwords resource is available; if not, download it
|
| 9 |
+
try:
|
| 10 |
+
nltk.data.find('corpora/stopwords')
|
| 11 |
+
except LookupError:
|
| 12 |
+
nltk.download('stopwords')
|
| 13 |
# Function to process and classify PDF using both BERT and Random Forest models
|
| 14 |
def process_and_classify_pdf(file):
|
| 15 |
# Step 1: Process the PDF to extract and clean the text
|