Spaces:
Sleeping
Sleeping
| # /// script | |
| # requires-python = "==3.12" | |
| # dependencies = [ | |
| # "marimo", | |
| # "polars==1.23.0", | |
| # "sentence-transformers==3.4.1", | |
| # "umap-learn==0.5.7", | |
| # "llvmlite==0.44.0", | |
| # "altair==5.5.0", | |
| # "scikit-learn==1.6.1", | |
| # "numpy==2.1.3", | |
| # "mohtml==0.1.2", | |
| # ] | |
| # /// | |
| import marimo | |
| __generated_with = "0.11.9" | |
| app = marimo.App() | |
| def _(mo): | |
| mo.md("""### Bulk labelling demo""") | |
| return | |
| def _(mo, use_default_switch): | |
| uploaded_file = mo.ui.file(kind="area") if not use_default_switch.value else None | |
| uploaded_file | |
| return (uploaded_file,) | |
| def _(mo): | |
| use_default_switch = mo.ui.switch(False, label="Use default dataset") | |
| use_default_switch | |
| return (use_default_switch,) | |
| def _(mo): | |
| pos_label = mo.ui.text("pos", placeholder="positive label name") | |
| neg_label = mo.ui.text("neg", placeholder="negative label name") | |
| return neg_label, pos_label | |
| def _(uploaded_file, use_default_switch): | |
| should_stop = not use_default_switch.value and len(uploaded_file.value) == 0 | |
| return (should_stop,) | |
| def _(mo, pl, should_stop, uploaded_file, use_default_switch): | |
| mo.stop(should_stop , mo.md("**Submit a .csv dataset with a 'text' column or use the default one to continue.**")) | |
| if use_default_switch.value: | |
| df = pl.read_csv("spam.csv") | |
| else: | |
| df = pl.read_csv(uploaded_file.value[0].contents) | |
| texts = df["text"].to_list() | |
| return df, texts | |
| def _(SentenceTransformer, mo, texts): | |
| with mo.status.spinner(subtitle="Creating embeddings ...") as _spinner: | |
| tfm = SentenceTransformer("all-MiniLM-L6-v2") | |
| X = tfm.encode(texts) | |
| return X, tfm | |
| def _(X, mo): | |
| with mo.status.spinner(subtitle="Running UMAP ...") as _spinner: | |
| from umap import UMAP | |
| umap_tfm = UMAP() | |
| X_tfm = umap_tfm.fit_transform(X) | |
| return UMAP, X_tfm, umap_tfm | |
| def _(add_label, mo, neg_label, pos_label, undo): | |
| btn_spam = mo.ui.button(label=f"Annotate {neg_label.value}", on_click=lambda d: add_label(neg_label.value)) | |
| btn_ham = mo.ui.button(label=f"Annotate {pos_label.value}", on_click=lambda d: add_label(pos_label.value)) | |
| btn_undo = mo.ui.button(label="Undo", on_click=lambda d: undo()) | |
| return btn_ham, btn_spam, btn_undo | |
| def _(chart, get_label, neg_label, pos_label, set_label): | |
| def add_label(lab): | |
| current_labels = get_label() | |
| if lab == neg_label.value: | |
| new_ham = list(set(current_labels[pos_label.value]).difference(chart.value["index"])) | |
| new_spam = list(set(current_labels[neg_label.value]).union(chart.value["index"])) | |
| if lab == pos_label.value: | |
| new_ham = list(set(current_labels[pos_label.value]).union(chart.value["index"])) | |
| new_spam = list(set(current_labels[neg_label.value]).difference(chart.value["index"])) | |
| set_label({neg_label.value: new_spam, pos_label.value: new_ham}) | |
| return (add_label,) | |
| def _( | |
| br, | |
| btn_ham, | |
| btn_spam, | |
| btn_undo, | |
| chart, | |
| form, | |
| json_download, | |
| mo, | |
| neg_label, | |
| pos_label, | |
| switch, | |
| ): | |
| mo.vstack([ | |
| mo.md("Assign label names"), | |
| mo.hstack([pos_label, neg_label]), | |
| mo.md("Explore the data"), | |
| mo.hstack([btn_ham, btn_spam, btn_undo, switch, json_download]), | |
| br(), | |
| form if switch.value else "", | |
| br() if switch.value else "", | |
| chart | |
| ]) | |
| return | |
| def _(chart): | |
| chart.value["text"] | |
| return | |
| def _(chart, get_label, neg_label, pos_label, set_label): | |
| def undo(): | |
| current_labels = get_label() | |
| new_spam = set(current_labels[neg_label.value]).difference(chart.value["index"]) | |
| new_ham = set(current_labels[pos_label.value]).difference(chart.value["index"]) | |
| set_label({neg_label.value: list(new_spam), pos_label.value: list(new_ham)}) | |
| return (undo,) | |
| def _(): | |
| from mohtml import br | |
| return (br,) | |
| def _(mo, neg_label, pos_label): | |
| get_label, set_label = mo.state({pos_label.value: [], neg_label.value: []}) | |
| return get_label, set_label | |
| def _(mo): | |
| text_input = mo.ui.text_area(label="Reference sentences") | |
| form = mo.md("""{text_input}""").batch(text_input=text_input).form() | |
| return form, text_input | |
| def _(df_emb, labels, mo): | |
| from collections import Counter | |
| with mo.status.spinner(subtitle="Starting UI ...") as _spinner: | |
| df_emb | |
| Counter(labels) | |
| return (Counter,) | |
| def _(df_emb, mo, pl): | |
| import json | |
| data = df_emb.filter(pl.col("label") != "unlabeled").select("text", "label").to_dicts() | |
| json_download = mo.download( | |
| data=json.dumps(data).encode("utf-8"), | |
| filename="data.json", | |
| mimetype="application/json", | |
| label="Download JSON", | |
| ) | |
| return data, json, json_download | |
| def _(df_emb, mo, scatter): | |
| chart = mo.ui.altair_chart(scatter(df_emb)) | |
| return (chart,) | |
| def _(mo): | |
| switch = mo.ui.switch(False, label="Use search") | |
| return (switch,) | |
| def _(alt, neg_label, pos_label, switch): | |
| def scatter(df): | |
| return (alt.Chart(df) | |
| .mark_circle() | |
| .encode( | |
| x=alt.X("x:Q"), | |
| y=alt.Y("y:Q"), | |
| color=alt.Color("sim:Q") if switch.value else alt.Color("label:N", scale=alt.Scale( | |
| domain=['unlabeled', pos_label.value, neg_label.value], | |
| range=['steelblue', 'green', 'red'] | |
| )) | |
| ).properties(width=500, height=500)) | |
| return (scatter,) | |
| def _( | |
| X, | |
| X_tfm, | |
| cosine_similarity, | |
| form, | |
| get_label, | |
| neg_label, | |
| np, | |
| pl, | |
| pos_label, | |
| texts, | |
| tfm, | |
| ): | |
| df_emb = ( | |
| pl.DataFrame({ | |
| "x": X_tfm[:, 0], | |
| "y": X_tfm[:, 1], | |
| "index": range(X.shape[0]), | |
| "text": texts | |
| }).with_columns(sim=pl.lit(1)) | |
| ) | |
| if form.value: | |
| query = tfm.encode([form.value["text_input"]]) | |
| similarity = cosine_similarity(query, X)[0] | |
| df_emb = df_emb.with_columns(sim=similarity) | |
| spam = set(get_label()[neg_label.value]) | |
| ham = set(get_label()[pos_label.value]) | |
| labels = [] | |
| for i in range(df_emb.shape[0]): | |
| if i in spam: | |
| labels.append(neg_label.value) | |
| elif i in ham: | |
| labels.append(pos_label.value) | |
| else: | |
| labels.append("unlabeled") | |
| df_emb = df_emb.with_columns(label=np.array(labels)) | |
| return df_emb, ham, i, labels, query, similarity, spam | |
| def _(mo): | |
| with mo.status.spinner(subtitle="Loading libraries ...") as _spinner: | |
| import polars as pl | |
| import altair as alt | |
| import numpy as np | |
| from sklearn.metrics.pairwise import cosine_similarity | |
| from sklearn.linear_model import LogisticRegression | |
| return LogisticRegression, alt, cosine_similarity, np, pl | |
| def _(mo): | |
| with mo.status.spinner(subtitle="Loading SBERT ...") as _spinner: | |
| from sentence_transformers import SentenceTransformer | |
| return (SentenceTransformer,) | |
| def _(): | |
| import marimo as mo | |
| return (mo,) | |
| def _(): | |
| return | |
| if __name__ == "__main__": | |
| app.run() | |