Spaces:
Sleeping
Sleeping
| import numpy as np | |
| import copy | |
| from tqdm.auto import trange | |
| from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img import * | |
| from diffusers.models.transformers import Transformer2DModel | |
| original_Transformer2DModel_forward = Transformer2DModel.forward | |
| def hacked_Transformer2DModel_forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| encoder_hidden_states: Optional[torch.Tensor] = None, | |
| timestep: Optional[torch.LongTensor] = None, | |
| added_cond_kwargs: Dict[str, torch.Tensor] = None, | |
| class_labels: Optional[torch.LongTensor] = None, | |
| cross_attention_kwargs: Dict[str, Any] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| encoder_attention_mask: Optional[torch.Tensor] = None, | |
| return_dict: bool = True, | |
| ): | |
| cross_attention_kwargs = cross_attention_kwargs or {} | |
| cross_attention_kwargs['hidden_states_original_shape'] = hidden_states.shape | |
| return original_Transformer2DModel_forward( | |
| self, hidden_states, encoder_hidden_states, timestep, added_cond_kwargs, class_labels, cross_attention_kwargs, | |
| attention_mask, encoder_attention_mask, return_dict) | |
| Transformer2DModel.forward = hacked_Transformer2DModel_forward | |
| def sample_dpmpp_2m(model, x, sigmas, extra_args=None, callback=None, disable=None): | |
| """DPM-Solver++(2M).""" | |
| extra_args = {} if extra_args is None else extra_args | |
| s_in = x.new_ones([x.shape[0]]) | |
| sigma_fn = lambda t: t.neg().exp() | |
| t_fn = lambda sigma: sigma.log().neg() | |
| old_denoised = None | |
| for i in trange(len(sigmas) - 1, disable=disable): | |
| denoised = model(x, sigmas[i] * s_in, **extra_args) | |
| if callback is not None: | |
| callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised}) | |
| t, t_next = t_fn(sigmas[i]), t_fn(sigmas[i + 1]) | |
| h = t_next - t | |
| if old_denoised is None or sigmas[i + 1] == 0: | |
| x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised | |
| else: | |
| h_last = t - t_fn(sigmas[i - 1]) | |
| r = h_last / h | |
| denoised_d = (1 + 1 / (2 * r)) * denoised - (1 / (2 * r)) * old_denoised | |
| x = (sigma_fn(t_next) / sigma_fn(t)) * x - (-h).expm1() * denoised_d | |
| old_denoised = denoised | |
| return x | |
| class KModel: | |
| def __init__(self, unet, timesteps=1000, linear_start=0.00085, linear_end=0.012): | |
| betas = torch.linspace(linear_start ** 0.5, linear_end ** 0.5, timesteps, dtype=torch.float64) ** 2 | |
| alphas = 1. - betas | |
| alphas_cumprod = torch.tensor(np.cumprod(alphas, axis=0), dtype=torch.float32) | |
| self.sigmas = ((1 - alphas_cumprod) / alphas_cumprod) ** 0.5 | |
| self.log_sigmas = self.sigmas.log() | |
| self.sigma_data = 1.0 | |
| self.unet = unet | |
| return | |
| def sigma_min(self): | |
| return self.sigmas[0] | |
| def sigma_max(self): | |
| return self.sigmas[-1] | |
| def timestep(self, sigma): | |
| log_sigma = sigma.log() | |
| dists = log_sigma.to(self.log_sigmas.device) - self.log_sigmas[:, None] | |
| return dists.abs().argmin(dim=0).view(sigma.shape).to(sigma.device) | |
| def get_sigmas_karras(self, n, rho=7.): | |
| ramp = torch.linspace(0, 1, n) | |
| min_inv_rho = self.sigma_min ** (1 / rho) | |
| max_inv_rho = self.sigma_max ** (1 / rho) | |
| sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho | |
| return torch.cat([sigmas, sigmas.new_zeros([1])]) | |
| def __call__(self, x, sigma, **extra_args): | |
| x_ddim_space = x / (sigma[:, None, None, None] ** 2 + self.sigma_data ** 2) ** 0.5 | |
| t = self.timestep(sigma) | |
| cfg_scale = extra_args['cfg_scale'] | |
| eps_positive = self.unet(x_ddim_space, t, return_dict=False, **extra_args['positive'])[0] | |
| eps_negative = self.unet(x_ddim_space, t, return_dict=False, **extra_args['negative'])[0] | |
| noise_pred = eps_negative + cfg_scale * (eps_positive - eps_negative) | |
| return x - noise_pred * sigma[:, None, None, None] | |
| class OmostSelfAttnProcessor: | |
| def __call__(self, attn, hidden_states, encoder_hidden_states, hidden_states_original_shape, *args, **kwargs): | |
| batch_size, sequence_length, _ = hidden_states.shape | |
| query = attn.to_q(hidden_states) | |
| key = attn.to_k(hidden_states) | |
| value = attn.to_v(hidden_states) | |
| inner_dim = key.shape[-1] | |
| head_dim = inner_dim // attn.heads | |
| query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| hidden_states = torch.nn.functional.scaled_dot_product_attention( | |
| query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False | |
| ) | |
| hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
| hidden_states = hidden_states.to(query.dtype) | |
| hidden_states = attn.to_out[0](hidden_states) | |
| hidden_states = attn.to_out[1](hidden_states) | |
| return hidden_states | |
| class OmostCrossAttnProcessor: | |
| def __call__(self, attn, hidden_states, encoder_hidden_states, hidden_states_original_shape, *args, **kwargs): | |
| B, C, H, W = hidden_states_original_shape | |
| conds = [] | |
| masks = [] | |
| for m, c in encoder_hidden_states: | |
| m = torch.nn.functional.interpolate(m[None, None, :, :], (H, W), mode='nearest-exact').flatten().unsqueeze(1).repeat(1, c.size(1)) | |
| conds.append(c) | |
| masks.append(m) | |
| conds = torch.cat(conds, dim=1) | |
| masks = torch.cat(masks, dim=1) | |
| mask_bool = masks > 0.5 | |
| mask_scale = (H * W) / torch.sum(masks, dim=0, keepdim=True) | |
| batch_size, sequence_length, _ = conds.shape | |
| query = attn.to_q(hidden_states) | |
| key = attn.to_k(conds) | |
| value = attn.to_v(conds) | |
| inner_dim = key.shape[-1] | |
| head_dim = inner_dim // attn.heads | |
| query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) | |
| mask_bool = mask_bool[None, None, :, :].repeat(query.size(0), query.size(1), 1, 1) | |
| mask_scale = mask_scale[None, None, :, :].repeat(query.size(0), query.size(1), 1, 1) | |
| sim = query @ key.transpose(-2, -1) * attn.scale | |
| sim = sim * mask_scale.to(sim) | |
| sim.masked_fill_(mask_bool.logical_not(), float("-inf")) | |
| sim = sim.softmax(dim=-1) | |
| h = sim @ value | |
| h = h.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) | |
| h = attn.to_out[0](h) | |
| h = attn.to_out[1](h) | |
| return h | |
| class StableDiffusionXLOmostPipeline(StableDiffusionXLImg2ImgPipeline): | |
| def __init__(self, *args, **kwargs): | |
| super().__init__(*args, **kwargs) | |
| self.k_model = KModel(unet=self.unet) | |
| attn_procs = {} | |
| for name in self.unet.attn_processors.keys(): | |
| if name.endswith("attn2.processor"): | |
| attn_procs[name] = OmostCrossAttnProcessor() | |
| else: | |
| attn_procs[name] = OmostSelfAttnProcessor() | |
| self.unet.set_attn_processor(attn_procs) | |
| return | |
| def encode_bag_of_subprompts_greedy(self, prefixes: list[str], suffixes: list[str]): | |
| device = self.text_encoder.device | |
| def greedy_partition(items, max_sum): | |
| bags = [] | |
| current_bag = [] | |
| current_sum = 0 | |
| for item in items: | |
| num = item['length'] | |
| if current_sum + num > max_sum: | |
| if current_bag: | |
| bags.append(current_bag) | |
| current_bag = [item] | |
| current_sum = num | |
| else: | |
| current_bag.append(item) | |
| current_sum += num | |
| if current_bag: | |
| bags.append(current_bag) | |
| return bags | |
| def get_77_tokens_in_torch(subprompt_inds, tokenizer): | |
| # Note that all subprompt are theoretically less than 75 tokens (without bos/eos) | |
| result = [tokenizer.bos_token_id] + subprompt_inds[:75] + [tokenizer.eos_token_id] + [tokenizer.pad_token_id] * 75 | |
| result = result[:77] | |
| result = torch.tensor([result]).to(device=device, dtype=torch.int64) | |
| return result | |
| def merge_with_prefix(bag): | |
| merged_ids_t1 = copy.deepcopy(prefix_ids_t1) | |
| merged_ids_t2 = copy.deepcopy(prefix_ids_t2) | |
| for item in bag: | |
| merged_ids_t1.extend(item['ids_t1']) | |
| merged_ids_t2.extend(item['ids_t2']) | |
| return dict( | |
| ids_t1=get_77_tokens_in_torch(merged_ids_t1, self.tokenizer), | |
| ids_t2=get_77_tokens_in_torch(merged_ids_t2, self.tokenizer_2) | |
| ) | |
| def double_encode(pair_of_inds): | |
| inds = [pair_of_inds['ids_t1'], pair_of_inds['ids_t2']] | |
| text_encoders = [self.text_encoder, self.text_encoder_2] | |
| pooled_prompt_embeds = None | |
| prompt_embeds_list = [] | |
| for text_input_ids, text_encoder in zip(inds, text_encoders): | |
| prompt_embeds = text_encoder(text_input_ids, output_hidden_states=True) | |
| # Only last pooler_output is needed | |
| pooled_prompt_embeds = prompt_embeds.pooler_output | |
| # "2" because SDXL always indexes from the penultimate layer. | |
| prompt_embeds = prompt_embeds.hidden_states[-2] | |
| prompt_embeds_list.append(prompt_embeds) | |
| prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) | |
| return prompt_embeds, pooled_prompt_embeds | |
| # Begin with tokenizing prefixes | |
| prefix_length = 0 | |
| prefix_ids_t1 = [] | |
| prefix_ids_t2 = [] | |
| for prefix in prefixes: | |
| ids_t1 = self.tokenizer(prefix, truncation=False, add_special_tokens=False).input_ids | |
| ids_t2 = self.tokenizer_2(prefix, truncation=False, add_special_tokens=False).input_ids | |
| assert len(ids_t1) == len(ids_t2) | |
| prefix_length += len(ids_t1) | |
| prefix_ids_t1 += ids_t1 | |
| prefix_ids_t2 += ids_t2 | |
| # Then tokenizing suffixes | |
| allowed_suffix_length = 75 - prefix_length | |
| suffix_targets = [] | |
| for subprompt in suffixes: | |
| # Note that all subprompt are theoretically less than 75 tokens (without bos/eos) | |
| # So we can safely just crop it to 75 | |
| ids_t1 = self.tokenizer(subprompt, truncation=False, add_special_tokens=False).input_ids[:75] | |
| ids_t2 = self.tokenizer_2(subprompt, truncation=False, add_special_tokens=False).input_ids[:75] | |
| assert len(ids_t1) == len(ids_t2) | |
| suffix_targets.append(dict( | |
| length=len(ids_t1), | |
| ids_t1=ids_t1, | |
| ids_t2=ids_t2 | |
| )) | |
| # Then merge prefix and suffix tokens | |
| suffix_targets = greedy_partition(suffix_targets, max_sum=allowed_suffix_length) | |
| targets = [merge_with_prefix(b) for b in suffix_targets] | |
| # Encode! | |
| conds, poolers = [], [] | |
| for target in targets: | |
| cond, pooler = double_encode(target) | |
| conds.append(cond) | |
| poolers.append(pooler) | |
| conds_merged = torch.concat(conds, dim=1) | |
| poolers_merged = poolers[0] | |
| return dict(cond=conds_merged, pooler=poolers_merged) | |
| def all_conds_from_canvas(self, canvas_outputs, negative_prompt): | |
| mask_all = torch.ones(size=(90, 90), dtype=torch.float32) | |
| negative_cond, negative_pooler = self.encode_cropped_prompt_77tokens(negative_prompt) | |
| negative_result = [(mask_all, negative_cond)] | |
| positive_result = [] | |
| positive_pooler = None | |
| for item in canvas_outputs['bag_of_conditions']: | |
| current_mask = torch.from_numpy(item['mask']).to(torch.float32) | |
| current_prefixes = item['prefixes'] | |
| current_suffixes = item['suffixes'] | |
| current_cond = self.encode_bag_of_subprompts_greedy(prefixes=current_prefixes, suffixes=current_suffixes) | |
| if positive_pooler is None: | |
| positive_pooler = current_cond['pooler'] | |
| positive_result.append((current_mask, current_cond['cond'])) | |
| return positive_result, positive_pooler, negative_result, negative_pooler | |
| def encode_cropped_prompt_77tokens(self, prompt: str): | |
| device = self.text_encoder.device | |
| tokenizers = [self.tokenizer, self.tokenizer_2] | |
| text_encoders = [self.text_encoder, self.text_encoder_2] | |
| pooled_prompt_embeds = None | |
| prompt_embeds_list = [] | |
| for tokenizer, text_encoder in zip(tokenizers, text_encoders): | |
| text_input_ids = tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ).input_ids | |
| prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) | |
| # Only last pooler_output is needed | |
| pooled_prompt_embeds = prompt_embeds.pooler_output | |
| # "2" because SDXL always indexes from the penultimate layer. | |
| prompt_embeds = prompt_embeds.hidden_states[-2] | |
| prompt_embeds_list.append(prompt_embeds) | |
| prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) | |
| prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device) | |
| return prompt_embeds, pooled_prompt_embeds | |
| def __call__( | |
| self, | |
| initial_latent: torch.FloatTensor = None, | |
| strength: float = 1.0, | |
| num_inference_steps: int = 25, | |
| guidance_scale: float = 5.0, | |
| batch_size: Optional[int] = 1, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| cross_attention_kwargs: Optional[dict] = None, | |
| ): | |
| device = self.unet.device | |
| cross_attention_kwargs = cross_attention_kwargs or {} | |
| # Sigmas | |
| sigmas = self.k_model.get_sigmas_karras(int(num_inference_steps / strength)) | |
| sigmas = sigmas[-(num_inference_steps + 1):].to(device) | |
| # Initial latents | |
| _, C, H, W = initial_latent.shape | |
| noise = randn_tensor((batch_size, C, H, W), generator=generator, device=device, dtype=self.unet.dtype) | |
| latents = initial_latent.to(noise) + noise * sigmas[0].to(noise) | |
| # Shape | |
| height, width = latents.shape[-2:] | |
| height = height * self.vae_scale_factor | |
| width = width * self.vae_scale_factor | |
| add_time_ids = list((height, width) + (0, 0) + (height, width)) | |
| add_time_ids = torch.tensor([add_time_ids], dtype=self.unet.dtype) | |
| add_neg_time_ids = add_time_ids.clone() | |
| # Batch | |
| latents = latents.to(device) | |
| add_time_ids = add_time_ids.repeat(batch_size, 1).to(device) | |
| add_neg_time_ids = add_neg_time_ids.repeat(batch_size, 1).to(device) | |
| prompt_embeds = [(k.to(device), v.repeat(batch_size, 1, 1).to(noise)) for k, v in prompt_embeds] | |
| negative_prompt_embeds = [(k.to(device), v.repeat(batch_size, 1, 1).to(noise)) for k, v in negative_prompt_embeds] | |
| pooled_prompt_embeds = pooled_prompt_embeds.repeat(batch_size, 1).to(noise) | |
| negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(batch_size, 1).to(noise) | |
| # Feeds | |
| sampler_kwargs = dict( | |
| cfg_scale=guidance_scale, | |
| positive=dict( | |
| encoder_hidden_states=prompt_embeds, | |
| added_cond_kwargs={"text_embeds": pooled_prompt_embeds, "time_ids": add_time_ids}, | |
| cross_attention_kwargs=cross_attention_kwargs | |
| ), | |
| negative=dict( | |
| encoder_hidden_states=negative_prompt_embeds, | |
| added_cond_kwargs={"text_embeds": negative_pooled_prompt_embeds, "time_ids": add_neg_time_ids}, | |
| cross_attention_kwargs=cross_attention_kwargs | |
| ) | |
| ) | |
| # Sample | |
| results = sample_dpmpp_2m(self.k_model, latents, sigmas, extra_args=sampler_kwargs, disable=False) | |
| return StableDiffusionXLPipelineOutput(images=results) | |