Spaces:
Build error
Build error
| import os | |
| import random | |
| import uuid | |
| import gradio as gr | |
| import numpy as np | |
| from PIL import Image | |
| import spaces | |
| import torch | |
| from diffusers import StableDiffusion3Pipeline, DPMSolverMultistepScheduler, AutoencoderKL, StableDiffusion3Img2ImgPipeline | |
| from huggingface_hub import snapshot_download | |
| huggingface_token = os.getenv("HUGGINGFACE_TOKEN") | |
| model_path = snapshot_download( | |
| repo_id="stabilityai/stable-diffusion-3-medium", | |
| revision="refs/pr/26", | |
| repo_type="model", | |
| ignore_patterns=["*.md", "*..gitattributes"], | |
| local_dir="stable-diffusion-3-medium", | |
| token=huggingface_token, # type a new token-id. | |
| ) | |
| DESCRIPTION = """# Stable Diffusion 3""" | |
| if not torch.cuda.is_available(): | |
| DESCRIPTION += "\n<p>Running on CPU 🥶 This demo may not work on CPU.</p>" | |
| MAX_SEED = np.iinfo(np.int32).max | |
| CACHE_EXAMPLES = False | |
| MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "1536")) | |
| USE_TORCH_COMPILE = False | |
| ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1" | |
| device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| def load_pipeline(pipeline_type): | |
| if pipeline_type == "text2img": | |
| return StableDiffusion3Pipeline.from_pretrained(model_path, torch_dtype=torch.float16) | |
| elif pipeline_type == "img2img": | |
| return StableDiffusion3Img2ImgPipeline.from_pretrained(model_path, torch_dtype=torch.float16) | |
| def save_image(img): | |
| unique_name = str(uuid.uuid4()) + ".png" | |
| img.save(unique_name) | |
| return unique_name | |
| def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| return seed | |
| def generate( | |
| prompt:str, | |
| negative_prompt: str = "", | |
| use_negative_prompt: bool = False, | |
| seed: int = 0, | |
| width: int = 1024, | |
| height: int = 1024, | |
| guidance_scale: float = 7, | |
| randomize_seed: bool = False, | |
| num_inference_steps=30, | |
| NUM_IMAGES_PER_PROMPT=1, | |
| use_resolution_binning: bool = True, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| pipe = load_pipeline("text2img") | |
| pipe.to(device) | |
| seed = int(randomize_seed_fn(seed, randomize_seed)) | |
| generator = torch.Generator().manual_seed(seed) | |
| if not use_negative_prompt: | |
| negative_prompt = None # type: ignore | |
| output = pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| width=width, | |
| height=height, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| num_images_per_prompt=NUM_IMAGES_PER_PROMPT, | |
| output_type="battery", | |
| ).images | |
| return output | |
| def img2img_generate( | |
| prompt:str, | |
| init_image: gr.Image, | |
| negative_prompt: str = "", | |
| use_negative_prompt: bool = False, | |
| seed: int = 0, | |
| guidance_scale: float = 7, | |
| randomize_seed: bool = False, | |
| num_inference_steps=30, | |
| strength: float = 0.8, | |
| NUM_IMAGES_PER_PROMPT=1, | |
| use_resolution_binning: bool = True, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| pipe = load_pipeline("img2img") | |
| pipe.to(device) | |
| seed = int(randomize_seed_fn(seed, randomize_seed)) | |
| generator = torch.Generator().manual_seed(seed) | |
| if not use_negative_prompt: | |
| negative_prompt = None # type: ignore | |
| init_image = init_image.resize((768, 768)) | |
| output = pipe( | |
| prompt=prompt, | |
| image=init_image, | |
| negative_prompt=negative_prompt, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| strength=strength, | |
| num_images_per_prompt=NUM_IMAGES_PER_PROMPT, | |
| output_type="battery", | |
| ).images | |
| return output | |
| examples = [ | |
| "A cardboard with text 'New York' which is large and sits on a theater stage.", | |
| "A red sofa on top of a white building.", | |
| "A painting of an astronaut riding a pig wearing a tutu holding a pink umbrella.", | |
| "Studio photograph closeup of a chameleon over a black background.", | |
| "Closeup portrait photo of beautiful goth woman, makeup.", | |
| "A living room, bright modern Scandinavian style house, large windows.", | |
| "Portrait photograph of an anthropomorphic tortoise seated on a New York City subway train.", | |
| "Batman, cute modern Disney style, Pixar 3d portrait, ultra detailed, gorgeous, 3d zbrush, trending on dribbble, 8k render.", | |
| "Cinnamon bun on the plate, watercolor painting, detailed, brush strokes, light palette, light, cozy.", | |
| "A lion, colorful, low-poly, cyan and orange eyes, poly-hd, 3d, low-poly game art, polygon mesh, jagged, blocky, wireframe edges, centered composition.", | |
| "Long exposure photo of Tokyo street, blurred motion, streaks of light, surreal, dreamy, ghosting effect, highly detailed.", | |
| "A glamorous digital magazine photoshoot, a fashionable model wearing avant-garde clothing, set in a futuristic cyberpunk roof-top environment, with a neon-lit city background, intricate high fashion details, backlit by vibrant city glow, Vogue fashion photography.", | |
| "Masterpiece, best quality, girl, collarbone, wavy hair, looking at viewer, blurry foreground, upper body, necklace, contemporary, plain pants, intricate, print, pattern, ponytail, freckles, red hair, dappled sunlight, smile, happy." | |
| ] | |
| css = ''' | |
| .gradio-container{max-width: 1000px !important} | |
| h1{text-align:center} | |
| ''' | |
| with gr.Blocks(css=css,theme="snehilsanyal/scikit-learn") as demo: | |
| with gr.Row(): | |
| with gr.Column(): | |
| gr.HTML( | |
| """ | |
| <h1 style='text-align: center'> | |
| Stable Diffusion 3 Medium | |
| </h1> | |
| """ | |
| ) | |
| gr.HTML( | |
| """ | |
| """ | |
| ) | |
| with gr.Tabs(): | |
| with gr.TabItem("Text to Image"): | |
| with gr.Group(): | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", scale=0) | |
| result = gr.Gallery(label="Result", elem_id="gallery", show_label=False) | |
| with gr.Accordion("Advanced options", open=False): | |
| with gr.Row(): | |
| use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True) | |
| negative_prompt = gr.Text( | |
| label="Negative prompt", | |
| max_lines=1, | |
| value = "deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW", | |
| visible=True, | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| steps = gr.Slider( | |
| label="Steps", | |
| minimum=0, | |
| maximum=60, | |
| step=1, | |
| value=25, | |
| ) | |
| number_image = gr.Slider( | |
| label="Number of Images", | |
| minimum=1, | |
| maximum=4, | |
| step=1, | |
| value=2, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(visible=True): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=256, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=32, | |
| value=1024, | |
| ) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Guidance Scale", | |
| minimum=0.1, | |
| maximum=10, | |
| step=0.1, | |
| value=7.0, | |
| ) | |
| gr.Examples( | |
| examples=examples, | |
| inputs=prompt, | |
| outputs=[result], | |
| fn=generate, | |
| cache_examples=CACHE_EXAMPLES, | |
| ) | |
| use_negative_prompt.change( | |
| fn=lambda x: gr.update(visible=x), | |
| inputs=use_negative_prompt, | |
| outputs=negative_prompt, | |
| api_name=False, | |
| ) | |
| gr.on( | |
| triggers=[ | |
| prompt.submit, | |
| negative_prompt.submit, | |
| run_button.click, | |
| ], | |
| fn=generate, | |
| inputs=[ | |
| prompt, | |
| negative_prompt, | |
| use_negative_prompt, | |
| seed, | |
| width, | |
| height, | |
| guidance_scale, | |
| randomize_seed, | |
| steps, | |
| number_image, | |
| ], | |
| outputs=[result], | |
| api_name="run", | |
| ) | |
| with gr.TabItem("Image to Image"): | |
| with gr.Group(): | |
| with gr.Row(equal_height=True): | |
| with gr.Column(scale=1): | |
| img2img_prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| init_image = gr.Image(label="Input Image", type="pil") | |
| with gr.Row(): | |
| img2img_run_button = gr.Button("Generate", variant="primary") | |
| with gr.Column(scale=1): | |
| img2img_output = gr.Gallery(label="Result", elem_id="gallery") | |
| with gr.Accordion("Advanced options", open=False): | |
| with gr.Row(): | |
| img2img_use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True) | |
| img2img_negative_prompt = gr.Text( | |
| label="Negative prompt", | |
| max_lines=1, | |
| value="deformed, distorted, disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, NSFW", | |
| visible=True, | |
| ) | |
| img2img_seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| img2img_steps = gr.Slider( | |
| label="Steps", | |
| minimum=0, | |
| maximum=60, | |
| step=1, | |
| value=25, | |
| ) | |
| img2img_number_image = gr.Slider( | |
| label="Number of Images", | |
| minimum=1, | |
| maximum=4, | |
| step=1, | |
| value=2, | |
| ) | |
| img2img_randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(): | |
| img2img_guidance_scale = gr.Slider( | |
| label="Guidance Scale", | |
| minimum=0.1, | |
| maximum=10, | |
| step=0.1, | |
| value=7.0, | |
| ) | |
| strength = gr.Slider(label="Img2Img Strength", minimum=0.0, maximum=1.0, step=0.01, value=0.8) | |
| img2img_use_negative_prompt.change( | |
| fn=lambda x: gr.update(visible=x), | |
| inputs=img2img_use_negative_prompt, | |
| outputs=img2img_negative_prompt, | |
| api_name=False, | |
| ) | |
| gr.on( | |
| triggers=[ | |
| img2img_prompt.submit, | |
| img2img_negative_prompt.submit, | |
| img2img_run_button.click, | |
| ], | |
| fn=img2img_generate, | |
| inputs=[ | |
| img2img_prompt, | |
| init_image, | |
| img2img_negative_prompt, | |
| img2img_use_negative_prompt, | |
| img2img_seed, | |
| img2img_guidance_scale, | |
| img2img_randomize_seed, | |
| img2img_steps, | |
| strength, | |
| img2img_number_image, | |
| ], | |
| outputs=[img2img_output], | |
| api_name="img2img_run", | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue().launch(show_api=False, debug=False) |