File size: 12,997 Bytes
beb1862
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
567b414
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import pandas as pd
import numpy as np
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import LabelEncoder, StandardScaler
import joblib
import json

class CourseRecommender:
    def __init__(self):
        self.model = None
        self.label_encoders = {}
        self.scaler = StandardScaler()
        self.courses = self.get_courses()
        self.training_data = self.get_training_data()
        self.train_model()
    
    def get_courses(self):
        """Get static course data"""
        return {
            'BSCS': 'Bachelor of Science in Computer Science',
            'BSIT': 'Bachelor of Science in Information Technology',
            'BSBA': 'Bachelor of Science in Business Administration',
            'BSED': 'Bachelor of Science in Education',
            'BSN': 'Bachelor of Science in Nursing',
            'BSArch': 'Bachelor of Science in Architecture',
            'BSIE': 'Bachelor of Science in Industrial Engineering',
            'BSHM': 'Bachelor of Science in Hospitality Management',
            'BSA': 'Bachelor of Science in Accountancy',
            'BSPsych': 'Bachelor of Science in Psychology',
            'BSAgri': 'Bachelor of Science in Agriculture'
        }

    def save_student_data(self, stanine, gwa, strand, course, rating, hobbies=None):
        """Save student feedback to in-memory storage (for demonstration purposes)"""
        try:
            # In a real implementation, you could save this to a file or external storage
            print(f"Student feedback saved: Stanine={stanine}, GWA={gwa}, Strand={strand}, Course={course}, Rating={rating}, Hobbies={hobbies}")
            return True
        except Exception as e:
            print(f"Error saving student feedback: {e}")
            return False

    def get_training_data(self):
        """Get static training data for demonstration purposes"""
        # Sample training data to demonstrate the recommender system
        training_data = [
            # STEM students
            (8, 95, 'STEM', 'BSCS', 5, 'programming, gaming, technology'),
            (7, 90, 'STEM', 'BSIT', 4, 'computers, software, coding'),
            (9, 98, 'STEM', 'BSCS', 5, 'programming, algorithms, math'),
            (6, 85, 'STEM', 'BSIT', 3, 'technology, computers'),
            (8, 92, 'STEM', 'BSArch', 4, 'design, drawing, creativity'),
            (7, 88, 'STEM', 'BSIE', 4, 'engineering, problem solving'),
            
            # ABM students
            (8, 90, 'ABM', 'BSBA', 5, 'business, management, leadership'),
            (7, 85, 'ABM', 'BSA', 4, 'accounting, numbers, finance'),
            (6, 82, 'ABM', 'BSBA', 3, 'business, marketing'),
            (9, 95, 'ABM', 'BSA', 5, 'accounting, finance, analysis'),
            
            # HUMSS students
            (8, 88, 'HUMSS', 'BSED', 5, 'teaching, helping, education'),
            (7, 85, 'HUMSS', 'BSPsych', 4, 'psychology, helping, people'),
            (6, 80, 'HUMSS', 'BSED', 3, 'teaching, children'),
            (9, 92, 'HUMSS', 'BSPsych', 5, 'psychology, counseling, people'),
            
            # General interests
            (7, 87, 'STEM', 'BSN', 4, 'helping, healthcare, caring'),
            (8, 89, 'ABM', 'BSHM', 4, 'hospitality, service, management'),
            (6, 83, 'HUMSS', 'BSAgri', 3, 'agriculture, environment, nature'),
        ]
        
        return pd.DataFrame(training_data, columns=['stanine', 'gwa', 'strand', 'course', 'rating', 'hobbies'])

    def train_model(self):
        """Train the recommendation model using the training data"""
        try:
            training_data = self.get_training_data()
            
            if training_data.empty:
                print("No training data available - using default recommendations")
                return
            
            # Prepare features (hobbies required)
            feature_columns = ['stanine', 'gwa', 'strand', 'hobbies']
            
            # Create feature matrix
            X = training_data[feature_columns].copy()
            y = training_data['course']
            
            # Handle categorical variables
            categorical_columns = ['strand', 'hobbies']
            
            # Refit encoders every training to incorporate new categories
            for col in categorical_columns:
                if col in X.columns:
                    X[col] = X[col].fillna('unknown')
                    self.label_encoders[col] = LabelEncoder()
                    X[col] = self.label_encoders[col].fit_transform(X[col])
            
            # Scale numerical features
            numerical_columns = ['stanine', 'gwa']
            if not X[numerical_columns].empty:
                X[numerical_columns] = self.scaler.fit_transform(X[numerical_columns])
            
            # Train KNN model
            self.model = KNeighborsClassifier(n_neighbors=3, weights='distance')
            self.model.fit(X, y)
            
            print("✅ Model trained successfully (hobbies required and encoded)")
            
        except Exception as e:
            print(f"Error training model: {e}")
            self.model = None

    def get_default_recommendations(self, stanine, gwa, strand):
        """Provide default recommendations based on basic rules when no training data is available"""
        courses = self.courses
        recommendations = []
        
        # Basic rules for recommendations
        if strand == 'STEM':
            if stanine >= 8 and gwa >= 90:
                priority_courses = ['BSCS', 'BSIT']
            else:
                priority_courses = ['BSIT', 'BSCS']
        elif strand == 'ABM':
            priority_courses = ['BSBA']
        elif strand == 'HUMSS':
            priority_courses = ['BSED']
        else:
            priority_courses = list(courses.keys())
        
        # Add courses with default probabilities
        for i, course in enumerate(priority_courses[:2]):  # Only take top 2
            if course in courses:
                recommendations.append({
                    'code': course,
                    'name': courses[course],
                    'probability': 1.0 - (i * 0.2)  # Decreasing probability for each course
                })
        
        return recommendations

    def recommend_courses(self, stanine, gwa, strand, hobbies=None, top_n=5):
        """Recommend courses based on student profile (hobbies required)"""
        try:
            if self.model is None:
                return self.get_default_recommendations(stanine, gwa, strand)
            
            # Prepare input features
            input_data = pd.DataFrame([{
                'stanine': stanine,
                'gwa': gwa,
                'strand': strand,
                'hobbies': (hobbies or '').strip()
            }])
            # Validate hobbies
            if not input_data['hobbies'].iloc[0]:
                raise ValueError('hobbies is required for recommendations')
            
            # Encode categorical variables
            for col in ['strand', 'hobbies']:
                if col in input_data.columns and col in self.label_encoders:
                    value = input_data[col].iloc[0]
                    if value not in self.label_encoders[col].classes_:
                        # Extend encoder classes to include unseen value at inference
                        self.label_encoders[col].classes_ = np.append(self.label_encoders[col].classes_, value)
                    input_data[col] = self.label_encoders[col].transform(input_data[col])
            
            # Scale numerical features
            numerical_columns = ['stanine', 'gwa']
            if not input_data[numerical_columns].empty:
                input_data[numerical_columns] = self.scaler.transform(input_data[numerical_columns])
            
            # Get predictions
            predictions = self.model.predict_proba(input_data)
            courses = self.model.classes_
            
            # Get top recommendations
            top_indices = np.argsort(predictions[0])[-top_n:][::-1]
            recommendations = []
            
            course_map = self.courses
            for idx in top_indices:
                code = courses[idx]
                confidence = predictions[0][idx]
                recommendations.append({
                    'code': code,
                    'name': course_map.get(code, code),
                    'rating': round(confidence * 100, 1)
                })
            
            return recommendations
            
        except Exception as e:
            print(f"Error recommending courses: {e}")
            return self.get_default_recommendations(stanine, gwa, strand)

    def _get_recommendation_reason(self, course, stanine, gwa, strand, hobbies, interests, personality_type, learning_style, career_goals):
        """Generate personalized reason for recommendation"""
        reasons = []
        
        # Academic performance reasons
        if stanine >= 8:
            reasons.append("Excellent academic performance")
        elif stanine >= 6:
            reasons.append("Good academic foundation")
        
        if gwa >= 85:
            reasons.append("High academic achievement")
        elif gwa >= 80:
            reasons.append("Strong academic record")
        
        # Strand alignment
        if strand == "STEM" and course in ["BSCS", "BSIT", "BSArch", "BSIE", "BSN"]:
            reasons.append("Perfect match with your STEM background")
        elif strand == "ABM" and course in ["BSBA", "BSA"]:
            reasons.append("Excellent alignment with your ABM strand")
        elif strand == "HUMSS" and course in ["BSED", "BSPsych"]:
            reasons.append("Great fit with your HUMSS background")
        
        # Hobbies and interests alignment
        if hobbies and any(hobby in hobbies.lower() for hobby in ["gaming", "programming", "technology", "computers"]):
            if course in ["BSCS", "BSIT"]:
                reasons.append("Matches your technology interests")
        
        if hobbies and any(hobby in hobbies.lower() for hobby in ["business", "leadership", "management"]):
            if course in ["BSBA", "BSA"]:
                reasons.append("Aligns with your business interests")
        
        if hobbies and any(hobby in hobbies.lower() for hobby in ["helping", "teaching", "caring"]):
            if course in ["BSED", "BSN", "BSPsych"]:
                reasons.append("Perfect for your helping nature")
        
        # Personality type alignment
        if personality_type == "introvert" and course in ["BSCS", "BSA", "BSArch"]:
            reasons.append("Suits your introverted personality")
        elif personality_type == "extrovert" and course in ["BSBA", "BSED", "BSHM"]:
            reasons.append("Great for your outgoing personality")
        
        # Learning style alignment
        if learning_style == "hands-on" and course in ["BSIT", "BSHM", "BSAgri"]:
            reasons.append("Matches your hands-on learning preference")
        elif learning_style == "visual" and course in ["BSArch", "BSCS"]:
            reasons.append("Perfect for your visual learning style")
        
        # Career goals alignment
        if career_goals and any(goal in career_goals.lower() for goal in ["developer", "programmer", "software"]):
            if course in ["BSCS", "BSIT"]:
                reasons.append("Direct path to your career goals")
        
        if career_goals and any(goal in career_goals.lower() for goal in ["business", "entrepreneur", "manager"]):
            if course in ["BSBA", "BSA"]:
                reasons.append("Direct path to your business goals")
        
        # Default reason if no specific matches
        if not reasons:
            reasons.append("Good academic and personal fit")
        
        return " • ".join(reasons[:3])  # Limit to top 3 reasons

    def save_model(self, model_path='course_recommender_model.joblib'):
        """Save the trained model"""
        if self.model is None:
            raise Exception("No model to save!")
            
        model_data = {
            'model': self.model,
            'scaler': self.scaler,
            'label_encoders': self.label_encoders
        }
        joblib.dump(model_data, model_path)
    
    def load_model(self, model_path='course_recommender_model.joblib'):
        """Load a trained model"""
        model_data = joblib.load(model_path)
        self.model = model_data['model']
        self.scaler = model_data['scaler']
        self.label_encoders = model_data['label_encoders']

# Example usage
if __name__ == "__main__":
    recommender = CourseRecommender()
    
    # Example recommendation
    recommendations = recommender.recommend_courses(
        stanine=8,
        gwa=95,
        strand='STEM',
        hobbies='programming, gaming, technology'
    )
    print("Recommended courses:", json.dumps(recommendations, indent=2))