File size: 6,299 Bytes
05a9821
 
 
 
3b058e3
 
05a9821
 
3b058e3
05a9821
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b058e3
 
05a9821
3b058e3
 
05a9821
 
3b058e3
05a9821
 
3b058e3
05a9821
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e863a7
 
 
 
 
 
 
 
 
 
 
05a9821
 
 
9e863a7
 
05a9821
9e863a7
05a9821
9e863a7
9cfd703
9e863a7
 
 
 
05a9821
 
 
 
 
 
9cfd703
 
 
 
 
 
 
 
 
05a9821
 
 
9cfd703
05a9821
9cfd703
 
 
05a9821
9cfd703
05a9821
9cfd703
 
 
05a9821
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc61c2e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import os
import gradio as gr
import pandas as pd
import numpy as np
from ai_chatbot import AIChatbot, chat_with_bot_via_gateway, get_faqs_via_gateway
from database_recommender import CourseRecommender, get_course_recommendations_ui
import warnings
import logging
import requests

# Suppress warnings
warnings.filterwarnings('ignore')
logging.getLogger('tensorflow').setLevel(logging.ERROR)

# Initialize components
try:
    chatbot = AIChatbot()
    print("βœ… Chatbot initialized successfully")
except Exception as e:
    print(f"⚠️  Warning: Could not initialize chatbot: {e}")
    chatbot = None

try:
    recommender = CourseRecommender()
    print("βœ… Recommender initialized successfully")
except Exception as e:
    print(f"⚠️  Warning: Could not initialize recommender: {e}")
    recommender = None

GATEWAY_BASE_URL = os.environ.get('GATEWAY_BASE_URL', 'https://database-46m3.onrender.com')

def chat_with_bot(message, history):
    """Handle chatbot interactions via gateway-aware helper"""
    return chat_with_bot_via_gateway(chatbot, message, history, gateway_base_url=GATEWAY_BASE_URL)

def get_course_recommendations(stanine, gwa, strand, hobbies):
    return get_course_recommendations_ui(recommender, stanine, gwa, strand, hobbies)

def get_faqs():
    return get_faqs_via_gateway(gateway_base_url=GATEWAY_BASE_URL)

def get_available_courses():
    """Get available courses"""
    if recommender and recommender.courses:
        course_text = "## πŸŽ“ Available Courses\n\n"
        for code, name in recommender.courses.items():
            course_text += f"**{code}** - {name}\n"
        return course_text
    return "No courses available at the moment."

# Create Gradio interface
with gr.Blocks(title="PSAU AI Chatbot & Course Recommender", theme=gr.themes.Soft()) as demo:
    gr.Markdown(
        """
        # πŸ€– PSAU AI Chatbot & Course Recommender
        
        Welcome to the Pangasinan State University AI-powered admission assistant! 
        Get instant answers to your questions and receive personalized course recommendations.
        """
    )
    
    with gr.Tabs():
        # Chatbot Tab
        with gr.Tab("πŸ€– AI Chatbot"):
            gr.Markdown("""
            **Chat with the PSAU AI Assistant!**
            
            I can help you with:
            β€’ University admission questions
            β€’ Course information and guidance  
            β€’ General conversation
            β€’ Academic support
            
            Just type your message below and I'll respond naturally!
            """)
            
            chatbot_interface = gr.ChatInterface(
                fn=chat_with_bot,
                title="PSAU AI Assistant",
                description="Chat with me about university admissions, courses, or just say hello!",
                examples=[
                    "Hello!",
                    "What are the admission requirements?",
                    "How are you?",
                    "What courses are available?",
                    "Tell me about PSAU",
                    "What can you help me with?",
                    "Thank you",
                    "Goodbye"
                ],
                cache_examples=True
            )
        
        # Course Recommender Tab
        with gr.Tab("🎯 Course Recommender"):
            gr.Markdown("""
            Get personalized course recommendations based on your academic profile and interests!
            
            **Input Guidelines:**
            - **Stanine Score**: Enter a number between 1-9 (from your entrance exam)
            - **GWA**: Enter your General Weighted Average (75-100)
            - **Strand**: Select your senior high school strand
            - **Hobbies**: Describe your interests and hobbies in detail
            """)
            
            with gr.Row():
                with gr.Column():
                    stanine_input = gr.Textbox(
                        label="Stanine Score (1-9)",
                        placeholder="Enter your stanine score (1-9)",
                        info="Your stanine score from entrance examination",
                        value="7"
                    )
                    gwa_input = gr.Textbox(
                        label="GWA (75-100)",
                        placeholder="Enter your GWA (75-100)",
                        info="Your General Weighted Average",
                        value="85.0"
                    )
                    strand_input = gr.Dropdown(
                        choices=["STEM", "ABM", "HUMSS"],
                        value="STEM",
                        label="High School Strand",
                        info="Your senior high school strand"
                    )
                    hobbies_input = gr.Textbox(
                        label="Hobbies & Interests",
                        placeholder="e.g., programming, gaming, business, teaching, healthcare...",
                        info="Describe your interests and hobbies"
                    )
                    
                    recommend_btn = gr.Button("Get Recommendations", variant="primary")
                
                with gr.Column():
                    recommendations_output = gr.Markdown()
            
            recommend_btn.click(
                fn=get_course_recommendations,
                inputs=[stanine_input, gwa_input, strand_input, hobbies_input],
                outputs=recommendations_output
            )
        
        # Information Tab
        with gr.Tab("πŸ“š Information"):
            with gr.Row():
                with gr.Column():
                    gr.Markdown("### FAQ Section")
                    faq_btn = gr.Button("Show FAQs")
                    faq_output = gr.Markdown()
                    faq_btn.click(fn=get_faqs, outputs=faq_output)
                
                with gr.Column():
                    gr.Markdown("### Available Courses")
                    courses_btn = gr.Button("Show Courses")
                    courses_output = gr.Markdown()
                    courses_btn.click(fn=get_available_courses, outputs=courses_output)

if __name__ == "__main__":
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        show_error=True
    )