File size: 43,606 Bytes
f8ea354
8b04568
 
 
 
 
 
f8ea354
8b04568
eb74875
8b04568
 
b476fef
2fc19f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b04568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fc19f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b04568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
684d7a1
d157fd9
 
b476fef
684d7a1
 
 
8b04568
684d7a1
 
 
 
 
d157fd9
684d7a1
 
 
 
 
 
 
 
8b04568
684d7a1
 
 
 
 
 
 
 
 
8b04568
 
d157fd9
8b04568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d157fd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b04568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b476fef
8b04568
 
b476fef
8b04568
 
 
b476fef
8b04568
 
 
 
 
b476fef
8b04568
 
 
 
 
 
b476fef
d157fd9
8b04568
 
 
 
d157fd9
8b04568
 
 
 
 
d157fd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b04568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b476fef
 
8b04568
 
 
 
 
 
 
 
 
 
 
 
 
 
d157fd9
 
 
8b04568
b476fef
8b04568
 
 
 
 
 
 
b476fef
8b04568
 
 
 
 
 
 
 
 
 
 
 
 
 
b476fef
8b04568
 
 
 
 
 
b476fef
8b04568
f8ea354
d157fd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b04568
 
 
 
f8ea354
8b04568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b7f251
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b04568
 
 
 
 
b476fef
8b04568
 
 
 
 
 
 
 
b476fef
8b04568
 
 
4b7f251
8b04568
 
 
 
4b7f251
 
 
 
8b04568
4b7f251
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b476fef
8b04568
d157fd9
 
 
 
 
b476fef
8b04568
 
d157fd9
 
 
 
 
8b04568
 
d157fd9
 
 
 
 
8b04568
 
d157fd9
 
 
 
 
8b04568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b7f251
8b04568
 
 
 
4b7f251
 
 
 
8b04568
4b7f251
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b476fef
8b04568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fc19f4
 
 
 
 
 
 
 
8b04568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8173846
8b04568
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8173846
8b04568
 
 
 
 
 
 
 
 
 
 
 
f8ea354
8b04568
f8ea354
8b04568
 
f8ea354
 
 
8b04568
b476fef
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
import gradio as gr
import requests
import json
import re
from typing import List, Tuple, Optional
from difflib import SequenceMatcher
import string

class AIChatbot:
    def __init__(self, database_url: str = "https://database-1-xzm0.onrender.com"):
        self.database_url = database_url
        self.conversation_history = []
        
        # Profanity filter - list of bad words to filter (English and Tagalog)
        self.bad_words = {
            # English bad words
            'damn', 'hell', 'crap', 'suck', 'idiot', 'fool', 'jerk', 'loser', 'dumb', 'trash',
            'butt', 'freak', 'nut', 'moron', 'dummy', 'bozo', 'twit', 'dope', 'dumbass', 
            'poophead', 'jerkoff', 'bugger', 'wanker', 'tosser', 'bastard', 'scum', 'slime',
            'creep', 'brat', 'dweeb', 'goon', 'booby', 'puke', 'vomit', 'dung', 'sap', 
            'clutz', 'knob', 'prick', 'ass', 'shit', 'fuck', 'cock', 'tits', 'pussy', 
            'cunt', 'slut', 'bitch', 'whore', 'skank', 'stupid',
            'asshole', 'dick', 'douche', 'scumbag', 'slimeball', 'douchebag', 'knobhead',
            'numskull', 'halfwit', 'nincompoop', 'blockhead', 'dimwit', 'nitwit', 'simpleton',
            'dunce', 'buffoon', 'doofus', 'clod', 'goober', 'jerkface', 'schmuck', 'scoundrel',
            'miscreant', 'rat', 'git', 'wazzock', 'pillock', 'prat', 'plonker', 'div', 'bellend',
            'tosserhead', 'twitbrain', 'sapbrain', 'knucklehead', 'dopey', 'boob', 'dingbat', 'oaf',
            'ninnyhammer', 'chucklehead', 'saphead', 'pukehead', 'fuckface', 'assface', 'dickhead',
            'cockhead', 'shithead', 'twatface', 'doucheface', 'bastardface', 'motherfucker', 'shitbag',
            'cocksucker', 'jackass', 'wankerface', 'tosserface', 'arsehole', 'shitstain', 'assholeface',
            'prickface', 'dumbfuck', 'fucknut', 'twatwaffle', 'shitbagger', 'dickweed', 'cumdump',
            'asswipe', 'cockwomble', 'bollocks', 'twat', 'dick', 'fucking',
            # Tagalog bad words
            'gago', 'putangina', 'putang', 'hayop', 'lintik', 'walang', 'hiya', 'bobo', 'leche', 
            'punyeta', 'sira', 'ulo', 'bwisit', 'pakshet', 'tarantado', 'ulol', 'buwisit', 
            'hudas', 'kupal', 'shet', 'tae', 'tanga', 'tangina', 'bastos', 'maldita', 'loko',
            'asar', 'pekpek', 'burat', 'kantot', 'puke', 'kantotin', 'tarantadoin', 'ulolan',
            'bading', 'bakla', 'unggoy', 'asarin', 'bastusin', 'malditahin', 'buratin', 'pekpekin',
            'pukein', 'tangain', 'gagoan', 'tarantadohin', 'ina'
        }
        
        # Bad phrases (multi-word profanity - English and Tagalog)
        self.bad_phrases = {
            # English phrases
            'fuck you', 'shit you', 'damn you', 'hell you',
            'you bastard', 'you bitch', 'you dick', 'you prick', 'you cunt', 'you slut', 'you whore',
            'you jerk', 'you idiot', 'you fool', 'you moron', 'you dumbass', 'you douche', 'you twat',
            'you bugger', 'you wanker', 'you tosser', 'you poophead', 'you scumbag', 'you slimeball',
            'you douchebag', 'you knobhead', 'you bozo', 'you twit', 'you dope', 'you numskull',
            'you halfwit', 'you nincompoop', 'you blockhead', 'you dimwit', 'you nitwit', 'you simpleton',
            'you dunce', 'you buffoon', 'you doofus', 'you clod', 'you goober', 'you jerkface',
            'you schmuck', 'you scoundrel', 'you miscreant', 'you rat', 'you puke', 'you vomit',
            'you dung', 'you ass', 'you tits', 'you pussy', 'you cock', 'you fuckface', 'you assface',
            'you dickhead', 'you cockhead', 'you shithead', 'you twatface', 'you knobhead', 'you doucheface',
            'you loser', 'you bastardface', 'you motherfucker', 'you shitbag', 'you cocksucker',
            'you jackass', 'you wankerface', 'you tosserface', 'you arsehole', 'you asshole', 'you freak', 'you nut',
            'you scum', 'you creep', 'you brat', 'you dweeb', 'you goon', 'you pukehead', 'you shitstain',
            'you assholeface', 'you prickface', 'you dumbfuck', 'you fucknut', 'you twatwaffle',
            'you shitbagger', 'you dickweed', 'you cumdump', 'you asswipe', 'you cockwomble',
            'you bollocks', 'you wazzock', 'you pillock', 'you plonker', 'you div', 'you bellend',
            'you twitbrain', 'you motherfucking idiot', 'fuckig stupid',
            # Tagalog phrases
            'walang hiya', 'sira ulo', 'walang kwenta', 'walang silbe',
            'putang ina', 'putang ina ka', 'putang ina mo',
            'gago ka', 'gago mo', 'gago-gago', 'gago-gago ka', 'gago-gago mo', 'gagoan ka', 'gagoan mo',
            'tanga ka', 'tanga mo', 'tanga-tanga', 'tanga-tanga ka', 'tanga-tanga mo', 'tangain ka', 'tangain mo', 'tanga-in ka', 'tanga-in mo',
            'bobo ka', 'bobo mo', 'bobo-bobo', 'bobo-bobo ka', 'bobo-bobo mo', 'bobo-in ka', 'bobo-in mo',
            'ulol ka', 'ulol mo', 'ulol-ulol', 'ulol-ulol ka', 'ulol-ulol mo', 'ulolan ka', 'ulolan mo', 'ulol-in ka', 'ulol-in mo',
            'tarantado ka', 'tarantado mo', 'tarantado-tarantado', 'tarantado-tarantado ka', 'tarantado-tarantado mo',
            'tarantadoin ka', 'tarantadoin mo', 'tarantado-in ka', 'tarantado-in mo', 'tarantadohin ka', 'tarantadohin mo',
            'bastos ka', 'bastos mo', 'bastusin ka', 'bastusin mo',
            'maldita ka', 'maldita mo', 'malditahin ka', 'malditahin mo',
            'loko ka', 'loko mo', 'loko-loko', 'loko-loko ka', 'loko-loko mo',
            'asar ka', 'asar mo', 'asarin ka', 'asarin mo',
            'pekpek ka', 'pekpek mo', 'pekpekin ka', 'pekpekin mo',
            'burat ka', 'burat mo', 'buratin ka', 'buratin mo',
            'kantot ka', 'kantot mo', 'kantotin ka', 'kantotin mo',
            'puke ka', 'puke mo', 'pukein ka', 'pukein mo',
            'bading ka', 'bading mo',
            'bakla ka', 'bakla mo',
            'unggoy ka', 'unggoy mo'
        }
        
        # Simple conversation patterns
        self.greeting_patterns = [
            r'\b(hi|hello|hey|good morning|good afternoon|good evening)\b',
            r'\b(how are you|how\'s it going|what\'s up)\b'
        ]
        
        self.help_patterns = [
            r'\b(help|assist|support|guide)\b',
            r'\b(what can you do|what do you do|your capabilities)\b'
        ]
        
        self.thanks_patterns = [
            r'\b(thank you|thanks|appreciate|grateful)\b'
        ]
        
        self.goodbye_patterns = [
            r'\b(bye|goodbye|see you|farewell|exit|quit)\b'
        ]

    def is_greeting(self, message: str) -> bool:
        """Check if the message is a greeting"""
        message_lower = message.lower()
        for pattern in self.greeting_patterns:
            if re.search(pattern, message_lower):
                return True
        return False

    def is_help_request(self, message: str) -> bool:
        """Check if the message is asking for help"""
        message_lower = message.lower()
        for pattern in self.help_patterns:
            if re.search(pattern, message_lower):
                return True
        return False

    def is_thanks(self, message: str) -> bool:
        """Check if the message is expressing thanks"""
        message_lower = message.lower()
        for pattern in self.thanks_patterns:
            if re.search(pattern, message_lower):
                return True
        return False

    def is_goodbye(self, message: str) -> bool:
        """Check if the message is a goodbye"""
        message_lower = message.lower()
        for pattern in self.goodbye_patterns:
            if re.search(pattern, message_lower):
                return True
        return False

    def contains_profanity(self, message: str) -> bool:
        """Check if the message contains any profanity"""
        # Normalize message: convert to lowercase
        message_lower = message.lower()
        
        # First, check for bad phrases (multi-word profanity like "walang hiya", "sira ulo", "gago-gago")
        for phrase in self.bad_phrases:
            # Replace hyphens with spaces for better matching (handles "gago-gago" as "gago gago")
            phrase_normalized = phrase.replace('-', ' ')
            # Remove punctuation but keep spaces, normalize whitespace
            phrase_clean = re.sub(r'[^\w\s]', '', phrase_normalized)
            phrase_clean = re.sub(r'\s+', ' ', phrase_clean).strip()
            
            # Normalize message similarly - replace hyphens with spaces
            message_normalized = message_lower.replace('-', ' ')
            message_clean_phrase = re.sub(r'[^\w\s]', '', message_normalized)
            message_clean_phrase = re.sub(r'\s+', ' ', message_clean_phrase).strip()
            
            # Check if phrase appears in message (with flexible spacing)
            # Split phrase into words and create pattern that matches with any whitespace
            phrase_words = phrase_clean.split()
            if len(phrase_words) > 0:
                # Create pattern that matches words with one or more spaces between them
                # Using word boundaries to ensure whole words are matched
                phrase_pattern = r'\b' + r'\s+'.join(re.escape(word) for word in phrase_words) + r'\b'
                if re.search(phrase_pattern, message_clean_phrase, re.IGNORECASE):
                    return True
        
        # Normalize common obfuscation characters
        # Replace common character substitutions (numbers/symbols) with letters
        obfuscation_map = {
            '0': 'o', '1': 'i', '3': 'e', '4': 'a', '5': 's',
            '7': 't', '@': 'a', '!': 'i', '$': 's', '&': 'a'
        }
        
        # Create a normalized version for checking
        normalized = message_lower
        for char, replacement in obfuscation_map.items():
            normalized = normalized.replace(char, replacement)
        
        # Replace hyphens with spaces to handle hyphenated words like "gago-gago"
        normalized = normalized.replace('-', ' ')
        
        # Remove all non-word characters (except spaces) for word boundary checking
        message_clean = re.sub(r'[^\w\s]', '', normalized)
        # Normalize multiple spaces to single space
        message_clean = re.sub(r'\s+', ' ', message_clean).strip()
        words = message_clean.split()
        
        # Check for exact word matches in cleaned message
        for word in words:
            if word in self.bad_words:
                return True
        
        # Check for words that start with bad words (handles variations like "fucking" from "fuck")
        # Also check the original message for word boundaries
        for bad_word in self.bad_words:
            # Pattern 1: Word boundary followed by bad word (handles "fuck", "fucking", etc.)
            pattern1 = r'\b' + re.escape(bad_word) + r'\w*'
            if re.search(pattern1, normalized):
                return True
            
            # Pattern 2: Check in cleaned message (handles words with punctuation removed)
            if bad_word in message_clean:
                # Make sure it's a whole word, not part of another word
                pattern2 = r'\b' + re.escape(bad_word) + r'\b'
                if re.search(pattern2, message_clean):
                    return True
        
        return False

    def get_profanity_warning(self) -> str:
        """Get a polite response when profanity is detected"""
        responses = [
            "I understand you might be frustrated, but please keep our conversation respectful. I'm here to help you with any questions or concerns you might have.",
            "I appreciate your message, but let's keep our conversation friendly and professional. How can I assist you today?",
            "I'm here to help, but I'd prefer we keep our conversation appropriate. Is there something specific you'd like to ask me?",
            "Let's maintain a respectful conversation. I'm happy to help you with any questions or information you need."
        ]
        import random
        return random.choice(responses)

    def get_greeting_response(self) -> str:
        """Generate a greeting response"""
        responses = [
            "Hello! I'm your AI assistant. How can I help you today?",
            "Hi there! I'm here to assist you with any questions you might have.",
            "Hello! Welcome! I can help you with general conversation or answer specific questions from our database.",
            "Hey! Nice to meet you! What can I do for you today?"
        ]
        import random
        return random.choice(responses)

    def get_help_response(self) -> str:
        """Generate a help response"""
        return """I'm an AI chatbot that can help you in two ways:

1. **General Conversation**: I can chat with you about various topics, answer greetings, and have friendly conversations.

2. **Specific Questions**: I can search our database for specific information and provide detailed answers to your questions.

**Smart Learning**: If I can't find an answer to your question, I'll automatically save it for review so we can improve our knowledge base and provide better answers in the future.

Just type your question or start a conversation, and I'll do my best to help you!"""

    def get_thanks_response(self) -> str:
        """Generate a thanks response"""
        responses = [
            "You're welcome! I'm happy to help.",
            "My pleasure! Feel free to ask if you need anything else.",
            "Glad I could assist you! Is there anything else you'd like to know?",
            "You're very welcome! I'm here whenever you need help."
        ]
        import random
        return random.choice(responses)

    def get_goodbye_response(self) -> str:
        """Generate a goodbye response"""
        responses = [
            "Goodbye! Have a great day!",
            "See you later! Take care!",
            "Farewell! Feel free to come back anytime.",
            "Bye! I enjoyed chatting with you!"
        ]
        import random
        return random.choice(responses)

    def save_unanswered_question(self, question: str) -> bool:
        """Save unanswered question to the database - matches your exact API"""
        print(f"Attempting to save unanswered question: '{question}'")
        
        try:
            # Use only the correct endpoint that matches your server
            endpoint = f"{self.database_url}/unanswered_questions"
            print(f"Using endpoint: {endpoint}")
            
            # Send POST request with only question (matching your server code)
            post_data = {
                "question": question
            }
            print(f"POST data: {post_data}")
            
            response = requests.post(
                endpoint, 
                json=post_data, 
                headers={"Content-Type": "application/json"},
                timeout=10
            )
            print(f"POST response status: {response.status_code}")
            print(f"POST response text: {response.text}")
            
            if response.status_code == 200:
                print(f"Successfully saved question to {endpoint}")
                return True
            else:
                print(f"Failed to save question. Status: {response.status_code}, Response: {response.text}")
                return False
                
        except requests.exceptions.RequestException as e:
            print(f"Request failed: {e}")
            return False
        except Exception as e:
            print(f"Unexpected error saving unanswered question: {e}")
            return False

    def _get_timestamp(self) -> str:
        """Get current timestamp in ISO format"""
        from datetime import datetime
        return datetime.now().isoformat()

    def _normalize_text(self, text: str) -> str:
        """Normalize text for better matching"""
        # Convert to lowercase
        text = text.lower()
        # Remove punctuation
        text = text.translate(str.maketrans('', '', string.punctuation))
        # Remove extra whitespace
        text = ' '.join(text.split())
        
        # Additional normalization for better matching
        # Replace common variations
        replacements = {
            'what are the': 'what',
            'what is the': 'what',
            'what are': 'what',
            'what is': 'what',
            'how do i': 'how',
            'how can i': 'how',
            'how to': 'how',
            'when is the': 'when',
            'when are the': 'when',
            'where is the': 'where',
            'where are the': 'where',
            'who is the': 'who',
            'who are the': 'who'
        }
        
        for old, new in replacements.items():
            if text.startswith(old):
                text = text.replace(old, new, 1)
                break
        
        return text

    def _extract_keywords(self, text: str) -> List[str]:
        """Extract important keywords from text with enhanced processing"""
        # Extended stop words to ignore
        stop_words = {
            'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by',
            'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'do', 'does', 'did',
            'will', 'would', 'could', 'should', 'may', 'might', 'can', 'what', 'how', 'when', 'where', 'why',
            'who', 'which', 'this', 'that', 'these', 'those', 'i', 'you', 'he', 'she', 'it', 'we', 'they',
            'me', 'him', 'her', 'us', 'them', 'my', 'your', 'his', 'her', 'its', 'our', 'their',
            'there', 'here', 'some', 'any', 'all', 'each', 'every', 'much', 'many', 'more', 'most',
            'very', 'just', 'only', 'also', 'even', 'still', 'yet', 'so', 'too', 'well', 'now', 'then'
        }
        
        # Normalize and split into words
        words = self._normalize_text(text).split()
        
        # Enhanced keyword extraction
        keywords = []
        for word in words:
            # Filter out stop words and very short words
            if word not in stop_words and len(word) > 2:
                # Add the word
                keywords.append(word)
                # Add common variations and stems
                if word.endswith('s') and len(word) > 3:
                    keywords.append(word[:-1])  # Remove 's' for plurals
                if word.endswith('ing') and len(word) > 4:
                    keywords.append(word[:-3])  # Remove 'ing'
                if word.endswith('ed') and len(word) > 3:
                    keywords.append(word[:-2])  # Remove 'ed'
        
        return list(set(keywords))  # Remove duplicates

    def _calculate_similarity(self, text1: str, text2: str) -> float:
        """Calculate similarity between two texts using advanced methods"""
        norm1 = self._normalize_text(text1)
        norm2 = self._normalize_text(text2)
        
        # Method 1: Sequence matcher on normalized text
        sequence_similarity = SequenceMatcher(None, norm1, norm2).ratio()
        
        # Method 2: Enhanced keyword overlap with stemming
        keywords1 = set(self._extract_keywords(text1))
        keywords2 = set(self._extract_keywords(text2))
        
        keyword_similarity = 0.0
        if keywords1 and keywords2:
            intersection = keywords1.intersection(keywords2)
            union = keywords1.union(keywords2)
            keyword_similarity = len(intersection) / len(union) if union else 0.0
        
        # Method 3: Substring containment (both directions)
        contains_similarity = 0.0
        if norm1 in norm2:
            contains_similarity = max(contains_similarity, 0.9 * (len(norm1) / len(norm2)))
        if norm2 in norm1:
            contains_similarity = max(contains_similarity, 0.9 * (len(norm2) / len(norm1)))
        
        # Method 4: Enhanced word order similarity
        words1 = norm1.split()
        words2 = norm2.split()
        word_order_similarity = 0.0
        if words1 and words2:
            # Check for common word sequences (exact order)
            common_sequences = 0
            max_len = min(len(words1), len(words2))
            for i in range(max_len):
                if words1[i] == words2[i]:
                    common_sequences += 1
            exact_order_similarity = common_sequences / max_len if max_len > 0 else 0.0
            
            # Check for word order flexibility (any order)
            set1 = set(words1)
            set2 = set(words2)
            common_words = set1.intersection(set2)
            total_words = set1.union(set2)
            flexible_order_similarity = len(common_words) / len(total_words) if total_words else 0.0
            
            # Check for phrase patterns (like "available courses" vs "courses available")
            phrase_similarity = self._calculate_phrase_order_similarity(words1, words2)
            
            # Combine different word order methods
            word_order_similarity = (
                exact_order_similarity * 0.3 +
                flexible_order_similarity * 0.5 +
                phrase_similarity * 0.2
            )
        
        # Method 5: Semantic similarity using word relationships
        semantic_similarity = self._calculate_semantic_similarity(keywords1, keywords2)
        
        # Method 6: Length similarity (shorter queries should match longer answers)
        length_similarity = 0.0
        if len(norm1) > 0 and len(norm2) > 0:
            length_ratio = min(len(norm1), len(norm2)) / max(len(norm1), len(norm2))
            length_similarity = length_ratio * 0.3  # Lower weight for length
        
        # Method 7: Phrase matching (for common phrases)
        phrase_similarity = self._calculate_phrase_similarity(norm1, norm2)
        
        # Combine all methods with optimized weights
        final_similarity = (
            sequence_similarity * 0.25 +
            keyword_similarity * 0.30 +
            contains_similarity * 0.20 +
            word_order_similarity * 0.10 +
            semantic_similarity * 0.10 +
            length_similarity * 0.03 +
            phrase_similarity * 0.02
        )
        
        return min(final_similarity, 1.0)  # Cap at 1.0

    def _calculate_semantic_similarity(self, keywords1: set, keywords2: set) -> float:
        """Calculate semantic similarity using word relationships"""
        if not keywords1 or not keywords2:
            return 0.0
        
        # Common semantic relationships
        semantic_groups = {
            'money': {'cost', 'price', 'tuition', 'fee', 'payment', 'money', 'financial', 'aid', 'scholarship'},
            'time': {'deadline', 'when', 'time', 'date', 'schedule', 'duration', 'period'},
            'contact': {'contact', 'phone', 'email', 'address', 'office', 'reach', 'call'},
            'requirements': {'requirement', 'need', 'required', 'must', 'prerequisite', 'condition'},
            'application': {'apply', 'application', 'submit', 'process', 'procedure'},
            'programs': {'program', 'course', 'major', 'degree', 'study', 'academic', 'available', 'offered', 'listings'},
            'admission': {'admission', 'admit', 'accept', 'enroll', 'entry', 'enter'},
            'courses': {'course', 'courses', 'program', 'programs', 'major', 'majors', 'degree', 'degrees', 'available', 'offered', 'listings', 'what', 'which'}
        }
        
        # Check if keywords belong to the same semantic group
        semantic_score = 0.0
        for group, words in semantic_groups.items():
            group1_match = any(keyword in words for keyword in keywords1)
            group2_match = any(keyword in words for keyword in keywords2)
            if group1_match and group2_match:
                semantic_score += 0.3
        
        return min(semantic_score, 1.0)

    def _calculate_phrase_similarity(self, text1: str, text2: str) -> float:
        """Calculate similarity based on common phrases"""
        # Common phrases that should match
        common_phrases = [
            ('admission requirements', 'requirements admission'),
            ('financial aid', 'aid financial'),
            ('tuition cost', 'cost tuition'),
            ('application deadline', 'deadline application'),
            ('contact admissions', 'admissions contact'),
            ('gpa requirement', 'requirement gpa'),
            ('academic requirements', 'requirements academic')
        ]
        
        phrase_score = 0.0
        for phrase1, phrase2 in common_phrases:
            if (phrase1 in text1 and phrase1 in text2) or (phrase2 in text1 and phrase2 in text2):
                phrase_score += 0.5
            elif (phrase1 in text1 and phrase2 in text2) or (phrase2 in text1 and phrase1 in text2):
                phrase_score += 0.4
        
        return min(phrase_score, 1.0)

    def _calculate_phrase_order_similarity(self, words1: List[str], words2: List[str]) -> float:
        """Calculate similarity based on phrase order flexibility"""
        if not words1 or not words2:
            return 0.0
        
        # Common phrase patterns that should match regardless of order
        phrase_patterns = [
            (['available', 'courses'], ['courses', 'available']),
            (['admission', 'requirements'], ['requirements', 'admission']),
            (['financial', 'aid'], ['aid', 'financial']),
            (['tuition', 'cost'], ['cost', 'tuition']),
            (['application', 'deadline'], ['deadline', 'application']),
            (['contact', 'admissions'], ['admissions', 'contact']),
            (['gpa', 'requirement'], ['requirement', 'gpa']),
            (['academic', 'requirements'], ['requirements', 'academic']),
            (['programs', 'available'], ['available', 'programs']),
            (['what', 'programs'], ['programs', 'what']),
            (['what', 'courses'], ['courses', 'what']),
            (['what', 'available'], ['available', 'what'])
        ]
        
        # Check for phrase pattern matches
        for pattern1, pattern2 in phrase_patterns:
            # Check if words1 contains pattern1 and words2 contains pattern2
            if (all(word in words1 for word in pattern1) and 
                all(word in words2 for word in pattern2)):
                return 0.8
            
            # Check if words1 contains pattern2 and words2 contains pattern1
            if (all(word in words1 for word in pattern2) and 
                all(word in words2 for word in pattern1)):
                return 0.8
        
        # Check for partial phrase matches
        for pattern1, pattern2 in phrase_patterns:
            # Check if at least 2 words from each pattern are present
            words1_matches = sum(1 for word in pattern1 if word in words1)
            words2_matches = sum(1 for word in pattern2 if word in words2)
            
            if words1_matches >= 2 and words2_matches >= 2:
                return 0.6
        
        return 0.0

    def _find_best_match(self, user_question: str, database_questions: List[str], threshold: float = 0.25) -> Optional[str]:
        """Find the best matching question from database with improved logic"""
        if not database_questions:
            return None
        
        best_match = None
        best_score = 0.0
        all_scores = []
        
        # Calculate similarity for all questions
        for db_question in database_questions:
            similarity = self._calculate_similarity(user_question, db_question)
            all_scores.append((db_question, similarity))
            if similarity > best_score:
                best_score = similarity
                best_match = db_question
        
        # Sort by similarity score
        all_scores.sort(key=lambda x: x[1], reverse=True)
        
        # If the best score is above threshold, return it
        if best_score >= threshold:
            return best_match
        
        # If no single match is above threshold, try adaptive threshold
        if all_scores:
            # Use the top score if it's reasonably close to threshold
            top_score = all_scores[0][1]
            if top_score >= threshold * 0.8:  # 80% of threshold
                return all_scores[0][0]
        
        # Last resort: if user question is very short, be more lenient
        if len(user_question.split()) <= 3 and all_scores:
            # For short queries, use a lower threshold
            if all_scores[0][1] >= 0.15:
                return all_scores[0][0]
        
        return None

    def _generate_query_variants(self, question: str) -> List[str]:
        """Generate lightweight query variants to improve matching against FAQs"""
        variants: List[str] = []
        original = question.strip()
        variants.append(original)

        # Normalized
        norm = self._normalize_text(original)
        variants.append(norm)

        # Remove trailing punctuation and repeated spaces already handled by normalize

        # Simple lemmatization-ish tweaks for common cases
        rules = [
            (r"\btakes\b", "take"),
            (r"\btake\b", "takes"),
            (r"\bdoes\b", "do"),
            (r"\bdo\b", "does"),
            (r"\bis\b", "are"),
            (r"\bare\b", "is"),
        ]

        for pattern, repl in rules:
            try:
                v = re.sub(pattern, repl, norm)
                if v not in variants:
                    variants.append(v)
            except Exception:
                pass

        # Last-word singular/plural toggle
        words = norm.split()
        if words:
            last = words[-1]
            if len(last) > 3 and last.endswith('s'):
                alt = ' '.join(words[:-1] + [last[:-1]])
                if alt not in variants:
                    variants.append(alt)
            else:
                alt = ' '.join(words[:-1] + [last + 's'])
                if alt not in variants:
                    variants.append(alt)

        # De-duplicate while preserving order
        seen = set()
        unique_variants: List[str] = []
        for v in variants:
            if v not in seen and v:
                seen.add(v)
                unique_variants.append(v)
        return unique_variants

    def fetch_from_database(self, question: str) -> str:
        """Fetch answer from the database with smart matching"""
        try:
            # First, try to get all available questions for smart matching
            all_questions = self._get_all_questions()
            
            # If we have all questions, try smart matching first
            if all_questions:
                best_match = self._find_best_match(question, all_questions)
                if best_match:
                    # Try to get answer for the best matching question
                    answer = self._get_answer_for_question(best_match)
                    if answer and not self._is_no_answer_response(answer):
                        return answer
            
            # Fallback to original method if smart matching doesn't work
            endpoints = [
                f"{self.database_url}/faqs",
                f"{self.database_url}/faq",
                f"{self.database_url}/search",
                f"{self.database_url}/query",
                f"{self.database_url}/api/faq"
            ]

            param_names = ["question", "q"]
            variants = self._generate_query_variants(question)

            for endpoint in endpoints:
                for variant in variants:
                    for param_name in param_names:
                        # Try GET
                        try:
                            response = requests.get(
                                endpoint,
                                params={param_name: variant},
                                timeout=10
                            )
                            if response.status_code == 200:
                                data = response.json()
                                if isinstance(data, dict):
                                    answer = data.get('answer', data.get('response', str(data)))
                                    if answer and answer.strip() and not self._is_no_answer_response(answer):
                                        return answer
                                elif isinstance(data, list) and len(data) > 0:
                                    answer = str(data[0])
                                    if answer and answer.strip() and not self._is_no_answer_response(answer):
                                        return answer
                                else:
                                    answer = str(data)
                                    if answer and answer.strip() and not self._is_no_answer_response(answer):
                                        return answer
                        except Exception:
                            pass

                        # Try POST JSON
                        try:
                            response = requests.post(
                                endpoint,
                                json={param_name: variant},
                                headers={"Content-Type": "application/json"},
                                timeout=10
                            )
                            if response.status_code == 200:
                                data = response.json()
                                if isinstance(data, dict):
                                    answer = data.get('answer', data.get('response', str(data)))
                                    if answer and answer.strip() and not self._is_no_answer_response(answer):
                                        return answer
                                elif isinstance(data, list) and len(data) > 0:
                                    answer = str(data[0])
                                    if answer and answer.strip() and not self._is_no_answer_response(answer):
                                        return answer
                                else:
                                    answer = str(data)
                                    if answer and answer.strip() and not self._is_no_answer_response(answer):
                                        return answer
                        except Exception:
                            pass
            
            # If no answer found, save the question as unanswered
            saved = self.save_unanswered_question(question)
            if saved:
                return "I'm sorry, I couldn't find a specific answer to your question in our database. I've saved your question for review, and we'll work on providing a better answer in the future. Could you try rephrasing your question or ask me something else?"
            else:
                return "I'm sorry, I couldn't find a specific answer to your question in our database. I tried to save your question for review, but there was an issue with our database connection. Could you try rephrasing your question or ask me something else?"
            
        except requests.exceptions.Timeout:
            # Save the question even if there's a timeout
            saved = self.save_unanswered_question(question)
            if saved:
                return "I'm sorry, the database is taking too long to respond. I've saved your question for review. Please try again in a moment."
            else:
                return "I'm sorry, the database is taking too long to respond. Please try again in a moment."
        except requests.exceptions.ConnectionError:
            # Save the question even if there's a connection error
            saved = self.save_unanswered_question(question)
            if saved:
                return "I'm sorry, I'm having trouble connecting to our database right now. I've saved your question for review. Please try again later."
            else:
                return "I'm sorry, I'm having trouble connecting to our database right now. Please try again later."
        except Exception as e:
            # Save the question even if there's an unexpected error
            saved = self.save_unanswered_question(question)
            if saved:
                return f"I encountered an error while searching our database: {str(e)}. I've saved your question for review. Please try again."
            else:
                return f"I encountered an error while searching our database: {str(e)}. Please try again."

    def _get_all_questions(self) -> List[str]:
        """Get all available questions from the database for smart matching"""
        try:
            # Try different endpoints to get all questions
            endpoints = [
                f"{self.database_url}/questions",
                f"{self.database_url}/faq/all",
                f"{self.database_url}/api/questions",
                f"{self.database_url}/all_questions"
            ]
            
            for endpoint in endpoints:
                try:
                    response = requests.get(endpoint, timeout=10)
                    if response.status_code == 200:
                        data = response.json()
                        if isinstance(data, list):
                            return [str(item) for item in data]
                        elif isinstance(data, dict) and 'questions' in data:
                            return [str(q) for q in data['questions']]
                except:
                    continue
            
            return []
        except:
            return []

    def _get_answer_for_question(self, question: str) -> Optional[str]:
        """Get answer for a specific question"""
        try:
            endpoints = [
                f"{self.database_url}/faqs",
                f"{self.database_url}/faq",
                f"{self.database_url}/search",
                f"{self.database_url}/query",
                f"{self.database_url}/api/faq"
            ]

            param_names = ["question", "q"]
            variants = self._generate_query_variants(question)

            for endpoint in endpoints:
                for variant in variants:
                    for param_name in param_names:
                        try:
                            response = requests.get(
                                endpoint,
                                params={param_name: variant},
                                timeout=10
                            )
                            if response.status_code == 200:
                                data = response.json()
                                if isinstance(data, dict):
                                    return data.get('answer', data.get('response', str(data)))
                                elif isinstance(data, list) and len(data) > 0:
                                    return str(data[0])
                                else:
                                    return str(data)
                        except Exception:
                            pass
                        try:
                            response = requests.post(
                                endpoint,
                                json={param_name: variant},
                                headers={"Content-Type": "application/json"},
                                timeout=10
                            )
                            if response.status_code == 200:
                                data = response.json()
                                if isinstance(data, dict):
                                    return data.get('answer', data.get('response', str(data)))
                                elif isinstance(data, list) and len(data) > 0:
                                    return str(data[0])
                                else:
                                    return str(data)
                        except Exception:
                            pass
            
            return None
        except:
            return None

    def _is_no_answer_response(self, answer: str) -> bool:
        """Check if the response indicates no answer was found"""
        no_answer_indicators = [
            "no answer",
            "not found",
            "no results",
            "no data",
            "empty",
            "null",
            "none",
            "i don't know",
            "i don't have",
            "cannot find",
            "unable to find"
        ]
        
        answer_lower = answer.lower().strip()
        return any(indicator in answer_lower for indicator in no_answer_indicators)

    def chat(self, message: str, history: List[List[str]]) -> str:
        """Main chat function"""
        if not message.strip():
            return "Please enter a message so I can help you!"
        
        # Check for profanity first
        if self.contains_profanity(message):
            response = self.get_profanity_warning()
            # Store conversation history (but don't process the message)
            self.conversation_history.append(("user", "[Filtered]"))
            self.conversation_history.append(("bot", response))
            return response
        
        # Store conversation history
        self.conversation_history.append(("user", message))
        
        # Check for conversation patterns
        if self.is_greeting(message):
            response = self.get_greeting_response()
        elif self.is_help_request(message):
            response = self.get_help_response()
        elif self.is_thanks(message):
            response = self.get_thanks_response()
        elif self.is_goodbye(message):
            response = self.get_goodbye_response()
        else:
            # Try to fetch from database
            response = self.fetch_from_database(message)
        
        # Store bot response
        self.conversation_history.append(("bot", response))
        
        return response

# Initialize the chatbot
chatbot = AIChatbot()

# Create Gradio interface
def create_interface():
    with gr.Blocks(
        title="AI Chatbot"
    ) as interface:
        
        gr.Markdown(
            """
            # 🤖 AI Chatbot Assistant
            
            Welcome! I'm your AI assistant that can help you with:
            - **General conversation** and friendly chat
            - **Specific questions** answered from our knowledge database
            
            Just type your message below and I'll do my best to help you!
            """
        )
        
        # Chat interface
        chatbot_interface = gr.ChatInterface(
            fn=chatbot.chat,
            title="Chat with AI Assistant",
            description="Ask me anything or just have a conversation!",
            examples=[
                "Hello!",
                "What can you help me with?",
                "How do I contact support?",
                "What are your services?",
                "Thank you for your help!"
            ],
            cache_examples=False
        )
        
        # Footer
        gr.Markdown(
            """
            ---
            **Note**: This chatbot can handle general conversation and search our database for specific information. 
            If you don't get the answer you're looking for, try rephrasing your question!
            """
        )
    
    return interface

# Launch the application
if __name__ == "__main__":
    interface = create_interface()
    interface.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=False,
        debug=True
    )