Commit
·
78022ff
1
Parent(s):
867cf07
Apply ruff
Browse files
app.py
CHANGED
|
@@ -1,74 +1,17 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import pickle
|
| 3 |
import streamlit as st
|
| 4 |
-
import pandas as pd
|
| 5 |
-
import vec2text
|
| 6 |
import torch
|
| 7 |
-
from transformers import AutoModel, AutoTokenizer
|
| 8 |
-
from umap import UMAP
|
| 9 |
-
import plotly.express as px
|
| 10 |
import numpy as np
|
| 11 |
-
|
| 12 |
-
from
|
| 13 |
-
import utils
|
| 14 |
|
| 15 |
use_cpu = not torch.cuda.is_available()
|
| 16 |
device = "cpu" if use_cpu else "cuda"
|
| 17 |
|
| 18 |
-
# Custom file cache decorator
|
| 19 |
-
|
| 20 |
-
def file_cache(file_path):
|
| 21 |
-
def decorator(func):
|
| 22 |
-
def wrapper(*args, **kwargs):
|
| 23 |
-
# Ensure the directory exists
|
| 24 |
-
dir_path = os.path.dirname(file_path)
|
| 25 |
-
if not os.path.exists(dir_path):
|
| 26 |
-
os.makedirs(dir_path, exist_ok=True)
|
| 27 |
-
print(f"Created directory {dir_path}")
|
| 28 |
-
|
| 29 |
-
# Check if the file already exists
|
| 30 |
-
if os.path.exists(file_path):
|
| 31 |
-
# Load from cache
|
| 32 |
-
with open(file_path, "rb") as f:
|
| 33 |
-
print(f"Loading cached data from {file_path}")
|
| 34 |
-
return pickle.load(f)
|
| 35 |
-
else:
|
| 36 |
-
# Compute and save to cache
|
| 37 |
-
result = func(*args, **kwargs)
|
| 38 |
-
with open(file_path, "wb") as f:
|
| 39 |
-
pickle.dump(result, f)
|
| 40 |
-
print(f"Saving new cache to {file_path}")
|
| 41 |
-
return result
|
| 42 |
-
return wrapper
|
| 43 |
-
return decorator
|
| 44 |
-
|
| 45 |
-
@st.cache_resource
|
| 46 |
-
def vector_compressor_from_config():
|
| 47 |
-
# Return UMAP with 2 components for dimensionality reduction
|
| 48 |
-
# return UMAP(n_components=2)
|
| 49 |
-
return PCA(n_components=2)
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
# Caching the dataframe since loading from an external source can be time-consuming
|
| 53 |
-
@st.cache_data
|
| 54 |
-
def load_data():
|
| 55 |
-
return pd.read_csv("https://huggingface.co/datasets/marksverdhei/reddit-syac-urls/resolve/main/train.csv")
|
| 56 |
-
|
| 57 |
df = load_data()
|
| 58 |
|
| 59 |
-
# Caching the model and tokenizer to avoid reloading
|
| 60 |
-
@st.cache_resource
|
| 61 |
-
def load_model_and_tokenizer():
|
| 62 |
-
encoder = AutoModel.from_pretrained("sentence-transformers/gtr-t5-base").encoder.to(device)
|
| 63 |
-
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/gtr-t5-base")
|
| 64 |
-
return encoder, tokenizer
|
| 65 |
-
|
| 66 |
encoder, tokenizer = load_model_and_tokenizer()
|
| 67 |
|
| 68 |
-
|
| 69 |
-
@st.cache_resource
|
| 70 |
-
def load_corrector():
|
| 71 |
-
return vec2text.load_pretrained_corrector("gtr-base")
|
| 72 |
|
| 73 |
corrector = load_corrector()
|
| 74 |
|
|
@@ -79,78 +22,11 @@ def load_embeddings():
|
|
| 79 |
|
| 80 |
embeddings = load_embeddings()
|
| 81 |
|
| 82 |
-
# Custom cache the UMAP reduction using file_cache decorator
|
| 83 |
-
@st.cache_data
|
| 84 |
-
@file_cache(".cache/reducer_embeddings.pickle")
|
| 85 |
-
def reduce_embeddings(embeddings):
|
| 86 |
-
reducer = vector_compressor_from_config()
|
| 87 |
-
return reducer.fit_transform(embeddings), reducer
|
| 88 |
-
|
| 89 |
-
vectors_2d, reducer = reduce_embeddings(embeddings)
|
| 90 |
-
|
| 91 |
-
# Add a scatter plot using Plotly
|
| 92 |
-
fig = px.scatter(
|
| 93 |
-
x=vectors_2d[:, 0],
|
| 94 |
-
y=vectors_2d[:, 1],
|
| 95 |
-
opacity=0.6,
|
| 96 |
-
hover_data={"Title": df["title"]},
|
| 97 |
-
labels={'x': 'UMAP Dimension 1', 'y': 'UMAP Dimension 2'},
|
| 98 |
-
title="UMAP Scatter Plot of Reddit Titles",
|
| 99 |
-
color_discrete_sequence=["#ff504c"] # Set default blue color for points
|
| 100 |
-
)
|
| 101 |
-
|
| 102 |
-
# Customize the layout to adapt to browser settings (light/dark mode)
|
| 103 |
-
fig.update_layout(
|
| 104 |
-
template=None, # Let Plotly adapt automatically based on user settings
|
| 105 |
-
plot_bgcolor="rgba(0, 0, 0, 0)",
|
| 106 |
-
paper_bgcolor="rgba(0, 0, 0, 0)"
|
| 107 |
-
)
|
| 108 |
-
|
| 109 |
-
x, y = 0.0, 0.0
|
| 110 |
-
vec = np.array([x, y]).astype("float32")
|
| 111 |
-
|
| 112 |
-
# Add a card container to the right of the content with Streamlit columns
|
| 113 |
-
col1, col2 = st.columns([3, 1]) # Adjusting ratio to allocate space for the card container
|
| 114 |
-
|
| 115 |
-
with col1:
|
| 116 |
-
# Main content stays here (scatterplot, form, etc.)
|
| 117 |
-
selected_points = plotly_events(fig, click_event=True, hover_event=False, #override_height=600, override_width="100%"
|
| 118 |
-
)
|
| 119 |
-
with st.form(key="form1_main"):
|
| 120 |
-
if selected_points:
|
| 121 |
-
clicked_point = selected_points[0]
|
| 122 |
-
x_coord = x = clicked_point['x']
|
| 123 |
-
y_coord = y = clicked_point['y']
|
| 124 |
-
|
| 125 |
-
x = st.number_input("X Coordinate", value=x, format="%.10f")
|
| 126 |
-
y = st.number_input("Y Coordinate", value=y, format="%.10f")
|
| 127 |
-
vec = np.array([x, y]).astype("float32")
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
submit_button = st.form_submit_button("Submit")
|
| 131 |
-
|
| 132 |
-
if selected_points or submit_button:
|
| 133 |
-
inferred_embedding = reducer.inverse_transform(np.array([[x, y]]) if not isinstance(reducer, UMAP) else np.array([[x, y]]))
|
| 134 |
-
inferred_embedding = inferred_embedding.astype("float32")
|
| 135 |
|
| 136 |
-
|
| 137 |
-
embeddings=torch.tensor(inferred_embedding).cuda(),
|
| 138 |
-
corrector=corrector,
|
| 139 |
-
num_steps=20,
|
| 140 |
-
)
|
| 141 |
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
else:
|
| 145 |
-
st.text("Click on a point in the scatterplot to see its coordinates.")
|
| 146 |
|
| 147 |
-
with
|
| 148 |
-
|
| 149 |
-
st.write(f"{vectors_2d.dtype} {vec.dtype}")
|
| 150 |
-
if closest_sentence_index > -1:
|
| 151 |
-
st.write(df["title"].iloc[closest_sentence_index])
|
| 152 |
-
# Card content
|
| 153 |
-
st.markdown("## Card Container")
|
| 154 |
-
st.write("This is an additional card container to the right of the main content.")
|
| 155 |
-
st.write("You can use this space to show additional information, actions, or insights.")
|
| 156 |
-
st.button("Card Button")
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
|
|
|
|
|
|
| 2 |
import torch
|
|
|
|
|
|
|
|
|
|
| 3 |
import numpy as np
|
| 4 |
+
import views
|
| 5 |
+
from resources import load_corrector, load_data, load_model_and_tokenizer
|
|
|
|
| 6 |
|
| 7 |
use_cpu = not torch.cuda.is_available()
|
| 8 |
device = "cpu" if use_cpu else "cuda"
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
df = load_data()
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
encoder, tokenizer = load_model_and_tokenizer()
|
| 13 |
|
| 14 |
+
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
corrector = load_corrector()
|
| 17 |
|
|
|
|
| 22 |
|
| 23 |
embeddings = load_embeddings()
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
+
tab1, tab2 = st.tabs(["plot", "diffs"])
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
+
with tab1:
|
| 29 |
+
views.plot()
|
|
|
|
|
|
|
| 30 |
|
| 31 |
+
with tab2:
|
| 32 |
+
views.diffs()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
utils.py
CHANGED
|
@@ -1,3 +1,5 @@
|
|
|
|
|
|
|
|
| 1 |
import numpy as np
|
| 2 |
|
| 3 |
|
|
@@ -25,4 +27,29 @@ def find_exact_match(matrix, query_vector, decimals=9):
|
|
| 25 |
if np.any(matches):
|
| 26 |
return np.where(matches)[0][0] # Return the first match
|
| 27 |
else:
|
| 28 |
-
return -1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import pickle
|
| 3 |
import numpy as np
|
| 4 |
|
| 5 |
|
|
|
|
| 27 |
if np.any(matches):
|
| 28 |
return np.where(matches)[0][0] # Return the first match
|
| 29 |
else:
|
| 30 |
+
return -1
|
| 31 |
+
|
| 32 |
+
def file_cache(file_path):
|
| 33 |
+
def decorator(func):
|
| 34 |
+
def wrapper(*args, **kwargs):
|
| 35 |
+
# Ensure the directory exists
|
| 36 |
+
dir_path = os.path.dirname(file_path)
|
| 37 |
+
if not os.path.exists(dir_path):
|
| 38 |
+
os.makedirs(dir_path, exist_ok=True)
|
| 39 |
+
print(f"Created directory {dir_path}")
|
| 40 |
+
|
| 41 |
+
# Check if the file already exists
|
| 42 |
+
if os.path.exists(file_path):
|
| 43 |
+
# Load from cache
|
| 44 |
+
with open(file_path, "rb") as f:
|
| 45 |
+
print(f"Loading cached data from {file_path}")
|
| 46 |
+
return pickle.load(f)
|
| 47 |
+
else:
|
| 48 |
+
# Compute and save to cache
|
| 49 |
+
result = func(*args, **kwargs)
|
| 50 |
+
with open(file_path, "wb") as f:
|
| 51 |
+
pickle.dump(result, f)
|
| 52 |
+
print(f"Saving new cache to {file_path}")
|
| 53 |
+
return result
|
| 54 |
+
return wrapper
|
| 55 |
+
return decorator
|