Commit
·
8aa44e7
1
Parent(s):
d8081ae
Add app
Browse files
app.py
ADDED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import vec2text
|
| 4 |
+
import torch
|
| 5 |
+
from transformers import AutoModel, AutoTokenizer, PreTrainedTokenizer, PreTrainedModel
|
| 6 |
+
from umap import UMAP
|
| 7 |
+
from tqdm import tqdm
|
| 8 |
+
import plotly.express as px
|
| 9 |
+
import numpy as np
|
| 10 |
+
|
| 11 |
+
# Activate tqdm with pandas
|
| 12 |
+
tqdm.pandas()
|
| 13 |
+
|
| 14 |
+
# Caching the dataframe since loading from external source can be time-consuming
|
| 15 |
+
@st.cache_data
|
| 16 |
+
def load_data():
|
| 17 |
+
return pd.read_csv("https://huggingface.co/datasets/marksverdhei/reddit-syac-urls/resolve/main/train.csv")
|
| 18 |
+
|
| 19 |
+
df = load_data()
|
| 20 |
+
|
| 21 |
+
# Caching the model and tokenizer to avoid reloading
|
| 22 |
+
@st.cache_resource
|
| 23 |
+
def load_model_and_tokenizer():
|
| 24 |
+
encoder = AutoModel.from_pretrained("sentence-transformers/gtr-t5-base").encoder.to("cuda")
|
| 25 |
+
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/gtr-t5-base")
|
| 26 |
+
return encoder, tokenizer
|
| 27 |
+
|
| 28 |
+
encoder, tokenizer = load_model_and_tokenizer()
|
| 29 |
+
|
| 30 |
+
# Caching the vec2text corrector
|
| 31 |
+
@st.cache_resource
|
| 32 |
+
def load_corrector():
|
| 33 |
+
return vec2text.load_pretrained_corrector("gtr-base")
|
| 34 |
+
|
| 35 |
+
corrector = load_corrector()
|
| 36 |
+
|
| 37 |
+
# Caching the precomputed embeddings since they are stored locally and large
|
| 38 |
+
@st.cache_data
|
| 39 |
+
def load_embeddings():
|
| 40 |
+
return np.load("syac-title-embeddings.npy")
|
| 41 |
+
|
| 42 |
+
embeddings = load_embeddings()
|
| 43 |
+
|
| 44 |
+
# Caching UMAP reduction as it's a heavy computation
|
| 45 |
+
@st.cache_resource
|
| 46 |
+
def reduce_embeddings(embeddings):
|
| 47 |
+
reducer = UMAP()
|
| 48 |
+
return reducer.fit_transform(embeddings), reducer
|
| 49 |
+
|
| 50 |
+
vectors_2d, reducer = reduce_embeddings(embeddings)
|
| 51 |
+
|
| 52 |
+
# Add a scatter plot using Plotly
|
| 53 |
+
fig = px.scatter(
|
| 54 |
+
x=vectors_2d[:, 0],
|
| 55 |
+
y=vectors_2d[:, 1],
|
| 56 |
+
opacity=0.4,
|
| 57 |
+
hover_data={"Title": df["title"]},
|
| 58 |
+
labels={'x': 'UMAP Dimension 1', 'y': 'UMAP Dimension 2'},
|
| 59 |
+
title="UMAP Scatter Plot of Reddit Titles"
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
# Display plot in Streamlit
|
| 63 |
+
st.plotly_chart(fig)
|
| 64 |
+
|
| 65 |
+
# Streamlit form to take user inputs and handle interaction
|
| 66 |
+
with st.form(key="form1"):
|
| 67 |
+
x = st.number_input("Input X coordinate")
|
| 68 |
+
y = st.number_input("Input Y coordinate")
|
| 69 |
+
submit_button = st.form_submit_button("Submit")
|
| 70 |
+
|
| 71 |
+
if submit_button:
|
| 72 |
+
inferred_embedding = reducer.inverse_transform([[x, y]])
|
| 73 |
+
output = vec2text.invert_embeddings(
|
| 74 |
+
embeddings=torch.tensor(inferred_embedding).cuda(),
|
| 75 |
+
corrector=corrector,
|
| 76 |
+
num_steps=20,
|
| 77 |
+
)
|
| 78 |
+
st.text(str(output))
|
| 79 |
+
st.text(str(inferred_embedding))
|