Spaces:
Sleeping
Sleeping
Update agents.py
Browse files
agents.py
CHANGED
|
@@ -6,7 +6,6 @@ from mcp import StdioServerParameters
|
|
| 6 |
from huggingface_hub import HfApi, login
|
| 7 |
from dotenv import load_dotenv
|
| 8 |
from typing import Optional
|
| 9 |
-
from models.gemini_model import GeminiModel
|
| 10 |
import requests
|
| 11 |
import re
|
| 12 |
import string
|
|
@@ -26,7 +25,6 @@ def download_file(task_id: str) -> str:
|
|
| 26 |
Args:
|
| 27 |
task_id: the ID of the task to download the file for.
|
| 28 |
"""
|
| 29 |
-
# Implement your file download logic here
|
| 30 |
data = requests.get(f"{DEFAULT_API_URL}/files/{task_id}")
|
| 31 |
if data.status_code == 200:
|
| 32 |
file_path = f"/tmp/{task_id}"
|
|
@@ -44,7 +42,6 @@ def get_file_content_as_text(task_id: str) -> str:
|
|
| 44 |
Args:
|
| 45 |
task_id: the ID of the task to get the file content for.
|
| 46 |
"""
|
| 47 |
-
# Implement your file content retrieval logic here
|
| 48 |
data = requests.get(f"{DEFAULT_API_URL}/files/{task_id}")
|
| 49 |
if data.status_code == 200:
|
| 50 |
return data.text
|
|
@@ -59,12 +56,11 @@ def load_hf_model(modelName: str):
|
|
| 59 |
:param modelName: Name of the model
|
| 60 |
:return: model
|
| 61 |
"""
|
| 62 |
-
load_dotenv()
|
| 63 |
|
| 64 |
# for local usage, we might use a hf token to log in
|
| 65 |
# hf_token = os.getenv("hugging_face")
|
| 66 |
-
# login(token=hf_token) #
|
| 67 |
-
# Modell initialisieren
|
| 68 |
model = HfApiModel(model_id=modelName)
|
| 69 |
return model
|
| 70 |
|
|
@@ -75,7 +71,6 @@ def load_ollama_model(modelName: str):
|
|
| 75 |
:param modelName: Name of the model
|
| 76 |
:return: model (via OpenAI compatible API)
|
| 77 |
"""
|
| 78 |
-
# Modell initialisieren
|
| 79 |
model = OpenAIServerModel(model_id=modelName, api_base="http://localhost:11434/v1")
|
| 80 |
return model
|
| 81 |
|
|
@@ -85,21 +80,18 @@ def load_lmStudio_model(modelName: str):
|
|
| 85 |
:param modelName: Name of the model
|
| 86 |
:return: model, accessible through the OpenAI compatible API
|
| 87 |
"""
|
| 88 |
-
# Modell initialisieren
|
| 89 |
-
#model = LiteLLMModel(model_id=modelName, api_base="http://localhost:1234")
|
| 90 |
model = OpenAIServerModel(model_id=modelName, api_base="http://localhost:1234/v1")
|
| 91 |
return model
|
| 92 |
|
| 93 |
def load_gemini_model(model_name: str):
|
| 94 |
"""
|
| 95 |
-
Loads
|
| 96 |
:return: model
|
| 97 |
"""
|
| 98 |
try:
|
| 99 |
print(f"Gemini API Key: {os.getenv('GEMINI_API_KEY')}")
|
| 100 |
model = LiteLLMModel(model_id=f"gemini/{model_name}",
|
| 101 |
api_key=os.getenv("GEMINI_API_KEY"))
|
| 102 |
-
#model = GeminiModel(api_key=os.getenv("GEMINI_API_KEY"))
|
| 103 |
return model
|
| 104 |
except Exception as e:
|
| 105 |
print("Error loading Gemini model:", e)
|
|
@@ -108,7 +100,6 @@ def load_gemini_model(model_name: str):
|
|
| 108 |
|
| 109 |
|
| 110 |
def get_agent(model_name:str, model_type:str) -> Optional[CodeAgent]:
|
| 111 |
-
# Modell initialisieren
|
| 112 |
|
| 113 |
match model_type:
|
| 114 |
case "hugging face":
|
|
@@ -123,31 +114,11 @@ def get_agent(model_name:str, model_type:str) -> Optional[CodeAgent]:
|
|
| 123 |
print("Model type not supported.")
|
| 124 |
return None
|
| 125 |
|
| 126 |
-
#model = load_lmStudio_model("gemma-3-4b-it")
|
| 127 |
-
#model = load_gemini_model()
|
| 128 |
-
#mopip del = HfApiModel()
|
| 129 |
-
#model=InferenceClientModel(model_id="meta-llama/Meta-Llama-3.1-8B-Instruct")
|
| 130 |
-
#model = TransformersModel(model_id="HuggingFaceTB/SmolLM-135M-Instruct")
|
| 131 |
# Tools laden
|
| 132 |
web_search_tool = DuckDuckGoSearchTool()
|
| 133 |
final_answer_tool = FinalAnswerTool()
|
| 134 |
visit_webpage_tool = VisitWebpageTool()
|
| 135 |
-
|
| 136 |
-
#speech_to_text_tool = SpeechToTextTool()
|
| 137 |
-
#transcript_tool = load_tool("maguid28/TranscriptTool", trust_remote_code=True)
|
| 138 |
-
|
| 139 |
-
#mcp_tool_collection = ToolCollection.from_mcp(server_parameters, trust_remote_code=True)
|
| 140 |
-
#with ToolCollection.from_mcp(server_parameters, trust_remote_code=True) as tool_collection:
|
| 141 |
-
# mcp_tool_agent = CodeAgent(tools=[*tool_collection.tools], add_base_tools=True)
|
| 142 |
-
|
| 143 |
-
#server_parameters = StdioServerParameters(
|
| 144 |
-
# command="uv",
|
| 145 |
-
# args=["--quiet", "pubmedmcp@0.1.3"],
|
| 146 |
-
# env={"UV_PYTHON": "3.12", **os.environ},
|
| 147 |
-
#)
|
| 148 |
-
#
|
| 149 |
-
#with ToolCollection.from_mcp(server_parameters, trust_remote_code=True) as tool_collection:
|
| 150 |
-
# mcp_agent = CodeAgent(tools=[*tool_collection.tools], model=model, add_base_tools=True)
|
| 151 |
|
| 152 |
variation_agent = CodeAgent(
|
| 153 |
model=model,
|
|
|
|
| 6 |
from huggingface_hub import HfApi, login
|
| 7 |
from dotenv import load_dotenv
|
| 8 |
from typing import Optional
|
|
|
|
| 9 |
import requests
|
| 10 |
import re
|
| 11 |
import string
|
|
|
|
| 25 |
Args:
|
| 26 |
task_id: the ID of the task to download the file for.
|
| 27 |
"""
|
|
|
|
| 28 |
data = requests.get(f"{DEFAULT_API_URL}/files/{task_id}")
|
| 29 |
if data.status_code == 200:
|
| 30 |
file_path = f"/tmp/{task_id}"
|
|
|
|
| 42 |
Args:
|
| 43 |
task_id: the ID of the task to get the file content for.
|
| 44 |
"""
|
|
|
|
| 45 |
data = requests.get(f"{DEFAULT_API_URL}/files/{task_id}")
|
| 46 |
if data.status_code == 200:
|
| 47 |
return data.text
|
|
|
|
| 56 |
:param modelName: Name of the model
|
| 57 |
:return: model
|
| 58 |
"""
|
| 59 |
+
load_dotenv()
|
| 60 |
|
| 61 |
# for local usage, we might use a hf token to log in
|
| 62 |
# hf_token = os.getenv("hugging_face")
|
| 63 |
+
# login(token=hf_token) # Login at hugging face
|
|
|
|
| 64 |
model = HfApiModel(model_id=modelName)
|
| 65 |
return model
|
| 66 |
|
|
|
|
| 71 |
:param modelName: Name of the model
|
| 72 |
:return: model (via OpenAI compatible API)
|
| 73 |
"""
|
|
|
|
| 74 |
model = OpenAIServerModel(model_id=modelName, api_base="http://localhost:11434/v1")
|
| 75 |
return model
|
| 76 |
|
|
|
|
| 80 |
:param modelName: Name of the model
|
| 81 |
:return: model, accessible through the OpenAI compatible API
|
| 82 |
"""
|
|
|
|
|
|
|
| 83 |
model = OpenAIServerModel(model_id=modelName, api_base="http://localhost:1234/v1")
|
| 84 |
return model
|
| 85 |
|
| 86 |
def load_gemini_model(model_name: str):
|
| 87 |
"""
|
| 88 |
+
Loads the gemini model
|
| 89 |
:return: model
|
| 90 |
"""
|
| 91 |
try:
|
| 92 |
print(f"Gemini API Key: {os.getenv('GEMINI_API_KEY')}")
|
| 93 |
model = LiteLLMModel(model_id=f"gemini/{model_name}",
|
| 94 |
api_key=os.getenv("GEMINI_API_KEY"))
|
|
|
|
| 95 |
return model
|
| 96 |
except Exception as e:
|
| 97 |
print("Error loading Gemini model:", e)
|
|
|
|
| 100 |
|
| 101 |
|
| 102 |
def get_agent(model_name:str, model_type:str) -> Optional[CodeAgent]:
|
|
|
|
| 103 |
|
| 104 |
match model_type:
|
| 105 |
case "hugging face":
|
|
|
|
| 114 |
print("Model type not supported.")
|
| 115 |
return None
|
| 116 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
# Tools laden
|
| 118 |
web_search_tool = DuckDuckGoSearchTool()
|
| 119 |
final_answer_tool = FinalAnswerTool()
|
| 120 |
visit_webpage_tool = VisitWebpageTool()
|
| 121 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
variation_agent = CodeAgent(
|
| 124 |
model=model,
|