Spaces:
Runtime error
Runtime error
Commit
·
931ef66
1
Parent(s):
ac6a529
change to from_pretrained
Browse files- __pycache__/model.cpython-38.pyc +0 -0
- app.py +3 -3
- model.py +37 -43
- requirements.txt +2 -1
__pycache__/model.cpython-38.pyc
CHANGED
|
Binary files a/__pycache__/model.cpython-38.pyc and b/__pycache__/model.cpython-38.pyc differ
|
|
|
app.py
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
from model import ECAPA_gender
|
| 4 |
-
|
| 5 |
-
model = ECAPA_gender(
|
| 6 |
-
model.load_state_dict(torch.load("gender_classifier.model", map_location="cpu"))
|
| 7 |
|
| 8 |
model.eval()
|
| 9 |
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
from model import ECAPA_gender
|
| 4 |
+
# Load the model
|
| 5 |
+
model = ECAPA_gender.from_pretrained("JaesungHuh/ecapa-gender")
|
| 6 |
+
# model.load_state_dict(torch.load("gender_classifier.model", map_location="cpu"))
|
| 7 |
|
| 8 |
model.eval()
|
| 9 |
|
model.py
CHANGED
|
@@ -1,14 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
import torch.nn as nn
|
| 3 |
import torch.nn.functional as F
|
| 4 |
|
| 5 |
import torchaudio
|
| 6 |
from torchaudio.functional import resample
|
| 7 |
-
|
|
|
|
| 8 |
|
| 9 |
|
| 10 |
class SEModule(nn.Module):
|
| 11 |
-
def __init__(self, channels, bottleneck=128):
|
| 12 |
super(SEModule, self).__init__()
|
| 13 |
self.se = nn.Sequential(
|
| 14 |
nn.AdaptiveAvgPool1d(1),
|
|
@@ -19,13 +23,13 @@ class SEModule(nn.Module):
|
|
| 19 |
nn.Sigmoid(),
|
| 20 |
)
|
| 21 |
|
| 22 |
-
def forward(self, input):
|
| 23 |
x = self.se(input)
|
| 24 |
return input * x
|
| 25 |
|
| 26 |
-
class Bottle2neck(nn.Module):
|
| 27 |
|
| 28 |
-
|
|
|
|
| 29 |
super(Bottle2neck, self).__init__()
|
| 30 |
width = int(math.floor(planes / scale))
|
| 31 |
self.conv1 = nn.Conv1d(inplanes, width*scale, kernel_size=1)
|
|
@@ -45,7 +49,7 @@ class Bottle2neck(nn.Module):
|
|
| 45 |
self.width = width
|
| 46 |
self.se = SEModule(planes)
|
| 47 |
|
| 48 |
-
def forward(self, x):
|
| 49 |
residual = x
|
| 50 |
out = self.conv1(x)
|
| 51 |
out = self.relu(out)
|
|
@@ -73,34 +77,12 @@ class Bottle2neck(nn.Module):
|
|
| 73 |
out = self.se(out)
|
| 74 |
out += residual
|
| 75 |
return out
|
|
|
|
| 76 |
|
| 77 |
-
class
|
| 78 |
-
|
| 79 |
-
def __init__(self, coef: float = 0.97):
|
| 80 |
-
super().__init__()
|
| 81 |
-
self.coef = coef
|
| 82 |
-
self.register_buffer(
|
| 83 |
-
'flipped_filter', torch.FloatTensor([-self.coef, 1.]).unsqueeze(0).unsqueeze(0)
|
| 84 |
-
)
|
| 85 |
-
|
| 86 |
-
def forward(self, input: torch.tensor) -> torch.tensor:
|
| 87 |
-
input = input.unsqueeze(1)
|
| 88 |
-
input = F.pad(input, (1, 0), 'reflect')
|
| 89 |
-
return F.conv1d(input, self.flipped_filter).squeeze(1)
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
class ECAPA_gender(nn.Module):
|
| 93 |
-
def __init__(self, config):
|
| 94 |
super(ECAPA_gender, self).__init__()
|
| 95 |
-
self.
|
| 96 |
-
C = config["C"]
|
| 97 |
-
|
| 98 |
-
self.torchfbank = torch.nn.Sequential(
|
| 99 |
-
PreEmphasis(),
|
| 100 |
-
torchaudio.transforms.MelSpectrogram(sample_rate=16000, n_fft=512, win_length=400, hop_length=160, \
|
| 101 |
-
f_min = 20, f_max = 7600, window_fn=torch.hamming_window, n_mels=80),
|
| 102 |
-
)
|
| 103 |
-
|
| 104 |
self.conv1 = nn.Conv1d(80, C, kernel_size=5, stride=1, padding=2)
|
| 105 |
self.relu = nn.ReLU()
|
| 106 |
self.bn1 = nn.BatchNorm1d(C)
|
|
@@ -121,13 +103,26 @@ class ECAPA_gender(nn.Module):
|
|
| 121 |
self.fc6 = nn.Linear(3072, 192)
|
| 122 |
self.bn6 = nn.BatchNorm1d(192)
|
| 123 |
self.fc7 = nn.Linear(192, 2)
|
| 124 |
-
self.pred2gender = {0 : '
|
| 125 |
-
|
| 126 |
-
def
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
|
| 132 |
x = self.conv1(x)
|
| 133 |
x = self.relu(x)
|
|
@@ -158,17 +153,16 @@ class ECAPA_gender(nn.Module):
|
|
| 158 |
|
| 159 |
return x
|
| 160 |
|
| 161 |
-
def load_audio(self, path):
|
| 162 |
audio, sr = torchaudio.load(path)
|
| 163 |
if sr != 16000:
|
| 164 |
audio = resample(audio, sr, 16000)
|
| 165 |
return audio
|
| 166 |
|
| 167 |
-
def predict(self, audio):
|
| 168 |
audio = self.load_audio(audio)
|
| 169 |
self.eval()
|
| 170 |
with torch.no_grad():
|
| 171 |
output = self.forward(audio)
|
| 172 |
_, pred = output.max(1)
|
| 173 |
-
return self.pred2gender[pred.item()]
|
| 174 |
-
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
from typing import Optional
|
| 3 |
+
|
| 4 |
import torch
|
| 5 |
import torch.nn as nn
|
| 6 |
import torch.nn.functional as F
|
| 7 |
|
| 8 |
import torchaudio
|
| 9 |
from torchaudio.functional import resample
|
| 10 |
+
|
| 11 |
+
from huggingface_hub import PyTorchModelHubMixin
|
| 12 |
|
| 13 |
|
| 14 |
class SEModule(nn.Module):
|
| 15 |
+
def __init__(self, channels : int , bottleneck : int = 128) -> None:
|
| 16 |
super(SEModule, self).__init__()
|
| 17 |
self.se = nn.Sequential(
|
| 18 |
nn.AdaptiveAvgPool1d(1),
|
|
|
|
| 23 |
nn.Sigmoid(),
|
| 24 |
)
|
| 25 |
|
| 26 |
+
def forward(self, input : torch.Tensor) -> torch.Tensor:
|
| 27 |
x = self.se(input)
|
| 28 |
return input * x
|
| 29 |
|
|
|
|
| 30 |
|
| 31 |
+
class Bottle2neck(nn.Module):
|
| 32 |
+
def __init__(self, inplanes : int, planes : int, kernel_size : Optional[int] = None, dilation : Optional[int] = None, scale : int = 8) -> None:
|
| 33 |
super(Bottle2neck, self).__init__()
|
| 34 |
width = int(math.floor(planes / scale))
|
| 35 |
self.conv1 = nn.Conv1d(inplanes, width*scale, kernel_size=1)
|
|
|
|
| 49 |
self.width = width
|
| 50 |
self.se = SEModule(planes)
|
| 51 |
|
| 52 |
+
def forward(self, x : torch.Tensor) -> torch.Tensor:
|
| 53 |
residual = x
|
| 54 |
out = self.conv1(x)
|
| 55 |
out = self.relu(out)
|
|
|
|
| 77 |
out = self.se(out)
|
| 78 |
out += residual
|
| 79 |
return out
|
| 80 |
+
|
| 81 |
|
| 82 |
+
class ECAPA_gender(nn.Module, PyTorchModelHubMixin):
|
| 83 |
+
def __init__(self, C : int = 1024):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
super(ECAPA_gender, self).__init__()
|
| 85 |
+
self.C = C
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
self.conv1 = nn.Conv1d(80, C, kernel_size=5, stride=1, padding=2)
|
| 87 |
self.relu = nn.ReLU()
|
| 88 |
self.bn1 = nn.BatchNorm1d(C)
|
|
|
|
| 103 |
self.fc6 = nn.Linear(3072, 192)
|
| 104 |
self.bn6 = nn.BatchNorm1d(192)
|
| 105 |
self.fc7 = nn.Linear(192, 2)
|
| 106 |
+
self.pred2gender = {0 : 'male', 1 : 'female'}
|
| 107 |
+
|
| 108 |
+
def logtorchfbank(self, x : torch.Tensor) -> torch.Tensor:
|
| 109 |
+
# Preemphasis
|
| 110 |
+
flipped_filter = torch.FloatTensor([-0.97, 1.]).unsqueeze(0).unsqueeze(0)
|
| 111 |
+
x = x.unsqueeze(1)
|
| 112 |
+
x = F.pad(x, (1, 0), 'reflect')
|
| 113 |
+
x = F.conv1d(x, flipped_filter).squeeze(1)
|
| 114 |
+
|
| 115 |
+
# Melspectrogram
|
| 116 |
+
x = torchaudio.transforms.MelSpectrogram(sample_rate=16000, n_fft=512, win_length=400, hop_length=160, \
|
| 117 |
+
f_min = 20, f_max = 7600, window_fn=torch.hamming_window, n_mels=80)(x) + 1e-6
|
| 118 |
+
|
| 119 |
+
# Log and normalize
|
| 120 |
+
x = x.log()
|
| 121 |
+
x = x - torch.mean(x, dim=-1, keepdim=True)
|
| 122 |
+
return x
|
| 123 |
+
|
| 124 |
+
def forward(self, x : torch.Tensor) -> torch.Tensor:
|
| 125 |
+
x = self.logtorchfbank(x)
|
| 126 |
|
| 127 |
x = self.conv1(x)
|
| 128 |
x = self.relu(x)
|
|
|
|
| 153 |
|
| 154 |
return x
|
| 155 |
|
| 156 |
+
def load_audio(self, path : str) -> torch.Tensor:
|
| 157 |
audio, sr = torchaudio.load(path)
|
| 158 |
if sr != 16000:
|
| 159 |
audio = resample(audio, sr, 16000)
|
| 160 |
return audio
|
| 161 |
|
| 162 |
+
def predict(self, audio : torch.Tensor) -> torch.Tensor:
|
| 163 |
audio = self.load_audio(audio)
|
| 164 |
self.eval()
|
| 165 |
with torch.no_grad():
|
| 166 |
output = self.forward(audio)
|
| 167 |
_, pred = output.max(1)
|
| 168 |
+
return self.pred2gender[pred.item()]
|
|
|
requirements.txt
CHANGED
|
@@ -1,2 +1,3 @@
|
|
| 1 |
torch
|
| 2 |
-
torchaudio
|
|
|
|
|
|
| 1 |
torch
|
| 2 |
+
torchaudio
|
| 3 |
+
pysoundfile
|