Spaces:
Paused
Paused
| """ | |
| Clean chatbot arena battle log. | |
| Usage: | |
| python3 clean_battle_data.py --mode conv_release | |
| """ | |
| import argparse | |
| import datetime | |
| import json | |
| import os | |
| from pytz import timezone | |
| import time | |
| from tqdm import tqdm | |
| from multiprocessing import Pool | |
| import tiktoken | |
| from collections import Counter | |
| import shortuuid | |
| from fastchat.serve.monitor.basic_stats import get_log_files, NUM_SERVERS | |
| from fastchat.utils import detect_language | |
| VOTES = ["tievote", "leftvote", "rightvote", "bothbad_vote"] | |
| IDENTITY_WORDS = [ | |
| "vicuna", | |
| "lmsys", | |
| "koala", | |
| "uc berkeley", | |
| "open assistant", | |
| "laion", | |
| "chatglm", | |
| "chatgpt", | |
| "gpt-4", | |
| "openai", | |
| "anthropic", | |
| "claude", | |
| "bard", | |
| "palm", | |
| "lamda", | |
| "google", | |
| "gemini", | |
| "llama", | |
| "qianwan", | |
| "qwen", | |
| "alibaba", | |
| "mistral", | |
| "zhipu", | |
| "KEG lab", | |
| "01.AI", | |
| "AI2", | |
| "Tülu", | |
| "Tulu", | |
| "deepseek", | |
| "hermes", | |
| "cohere", | |
| "DBRX", | |
| "databricks", | |
| ] | |
| ERROR_WORDS = [ | |
| "NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.", | |
| "$MODERATION$ YOUR INPUT VIOLATES OUR CONTENT MODERATION GUIDELINES.", | |
| "API REQUEST ERROR. Please increase the number of max tokens.", | |
| "**API REQUEST ERROR** Reason: The response was blocked.", | |
| "**API REQUEST ERROR**", | |
| ] | |
| UNFINISHED_WORDS = [ | |
| "▌", | |
| '<span class="cursor">', | |
| ] | |
| for i in range(len(IDENTITY_WORDS)): | |
| IDENTITY_WORDS[i] = IDENTITY_WORDS[i].lower() | |
| for i in range(len(ERROR_WORDS)): | |
| ERROR_WORDS[i] = ERROR_WORDS[i].lower() | |
| def remove_html(raw): | |
| if isinstance(raw, str) and raw.startswith("<h3>"): | |
| return raw[raw.find(": ") + 2 : -len("</h3>\n")] | |
| return raw | |
| def to_openai_format(messages): | |
| roles = ["user", "assistant"] | |
| ret = [] | |
| for i, x in enumerate(messages): | |
| ret.append({"role": roles[i % 2], "content": x[1]}) | |
| return ret | |
| def replace_model_name(old_name, tstamp): | |
| replace_dict = { | |
| "bard": "palm-2", | |
| "claude-v1": "claude-1", | |
| "claude-instant-v1": "claude-instant-1", | |
| "oasst-sft-1-pythia-12b": "oasst-pythia-12b", | |
| "claude-2": "claude-2.0", | |
| "StripedHyena-Nous-7B": "stripedhyena-nous-7b", | |
| "gpt-4-turbo": "gpt-4-1106-preview", | |
| "gpt-4-0125-assistants-api": "gpt-4-turbo-browsing", | |
| } | |
| if old_name in ["gpt-4", "gpt-3.5-turbo"]: | |
| if tstamp > 1687849200: | |
| return old_name + "-0613" | |
| else: | |
| return old_name + "-0314" | |
| if old_name in replace_dict: | |
| return replace_dict[old_name] | |
| return old_name | |
| def read_file(filename): | |
| data = [] | |
| for retry in range(5): | |
| try: | |
| # lines = open(filename).readlines() | |
| for l in open(filename): | |
| row = json.loads(l) | |
| if row["type"] in VOTES: | |
| data.append(row) | |
| break | |
| except FileNotFoundError: | |
| time.sleep(2) | |
| return data | |
| def read_file_parallel(log_files, num_threads=16): | |
| data_all = [] | |
| with Pool(num_threads) as p: | |
| ret_all = list(tqdm(p.imap(read_file, log_files), total=len(log_files))) | |
| for ret in ret_all: | |
| data_all.extend(ret) | |
| return data_all | |
| def process_data( | |
| data, | |
| exclude_model_names, | |
| sanitize_ip, | |
| ban_ip_list, | |
| ): | |
| encoding = tiktoken.encoding_for_model("gpt-3.5-turbo") | |
| convert_type = { | |
| "leftvote": "model_a", | |
| "rightvote": "model_b", | |
| "tievote": "tie", | |
| "bothbad_vote": "tie (bothbad)", | |
| } | |
| all_ips = dict() | |
| count_dict = { | |
| "anony": 0, | |
| "invalid": 0, | |
| "leaked_identity": 0, | |
| "banned": 0, | |
| "error": 0, | |
| "unfinished": 0, | |
| "none_msg": 0, | |
| "exclude_model": 0, | |
| } | |
| count_leak = {} | |
| battles = [] | |
| for row in data: | |
| flag_anony = False | |
| flag_leaked_identity = False | |
| flag_error = False | |
| flag_unfinished = False | |
| flag_none_msg = False | |
| if row["models"][0] is None or row["models"][1] is None: | |
| continue | |
| # Resolve model names | |
| models_public = [remove_html(row["models"][0]), remove_html(row["models"][1])] | |
| if "model_name" in row["states"][0]: | |
| models_hidden = [ | |
| row["states"][0]["model_name"], | |
| row["states"][1]["model_name"], | |
| ] | |
| if models_hidden[0] is None: | |
| models_hidden = models_public | |
| else: | |
| models_hidden = models_public | |
| if (models_public[0] == "" and models_public[1] != "") or ( | |
| models_public[1] == "" and models_public[0] != "" | |
| ): | |
| count_dict["invalid"] += 1 | |
| continue | |
| if models_public[0] == "" or models_public[0] == "Model A": | |
| flag_anony = True | |
| models = models_hidden | |
| else: | |
| flag_anony = False | |
| models = models_public | |
| if ( | |
| models_hidden[0] not in models_public[0] | |
| or models_hidden[1] not in models_public[1] | |
| ): | |
| count_dict["invalid"] += 1 | |
| continue | |
| # Detect langauge | |
| state = row["states"][0] | |
| if state["offset"] >= len(state["messages"]): | |
| count_dict["invalid"] += 1 | |
| continue | |
| lang_code = detect_language(state["messages"][state["offset"]][1]) | |
| # Drop conversations if the model names are leaked | |
| messages = "" | |
| for i in range(2): | |
| state = row["states"][i] | |
| for _, (role, msg) in enumerate(state["messages"][state["offset"] :]): | |
| if msg: | |
| messages += msg.lower() | |
| else: | |
| flag_none_msg = True | |
| for word in IDENTITY_WORDS: | |
| if word in messages: | |
| if word not in count_leak: | |
| count_leak[word] = 0 | |
| count_leak[word] += 1 | |
| flag_leaked_identity = True | |
| break | |
| for word in ERROR_WORDS: | |
| if word in messages: | |
| flag_error = True | |
| break | |
| for word in UNFINISHED_WORDS: | |
| if word in messages: | |
| flag_unfinished = True | |
| break | |
| if flag_none_msg: | |
| count_dict["none_msg"] += 1 | |
| continue | |
| if flag_leaked_identity: | |
| count_dict["leaked_identity"] += 1 | |
| continue | |
| if flag_error: | |
| count_dict["error"] += 1 | |
| continue | |
| if flag_unfinished: | |
| count_dict["unfinished"] += 1 | |
| continue | |
| # Replace bard with palm | |
| models = [replace_model_name(m, row["tstamp"]) for m in models] | |
| # Exclude certain models | |
| if exclude_model_names and any(x in exclude_model_names for x in models): | |
| count_dict["exclude_model"] += 1 | |
| continue | |
| question_id = row["states"][0]["conv_id"] | |
| conversation_a = to_openai_format( | |
| row["states"][0]["messages"][row["states"][0]["offset"] :] | |
| ) | |
| conversation_b = to_openai_format( | |
| row["states"][1]["messages"][row["states"][1]["offset"] :] | |
| ) | |
| ip = row["ip"] | |
| if ip not in all_ips: | |
| all_ips[ip] = {"ip": ip, "count": 0, "sanitized_id": shortuuid.uuid()} | |
| all_ips[ip]["count"] += 1 | |
| if sanitize_ip: | |
| user_id = f"{all_ips[ip]['sanitized_id']}" | |
| else: | |
| user_id = f"{all_ips[ip]['ip']}" | |
| if ban_ip_list is not None and ip in ban_ip_list: | |
| count_dict["banned"] += 1 | |
| continue | |
| if flag_anony: | |
| count_dict["anony"] += 1 | |
| for conv in conversation_a: | |
| conv["num_tokens"] = len( | |
| encoding.encode(conv["content"], allowed_special="all") | |
| ) | |
| for conv in conversation_b: | |
| conv["num_tokens"] = len( | |
| encoding.encode(conv["content"], allowed_special="all") | |
| ) | |
| # Save the results | |
| battles.append( | |
| dict( | |
| question_id=question_id, | |
| model_a=models[0], | |
| model_b=models[1], | |
| winner=convert_type[row["type"]], | |
| judge=f"arena_user_{user_id}", | |
| conversation_a=conversation_a, | |
| conversation_b=conversation_b, | |
| turn=len(conversation_a) // 2, | |
| anony=flag_anony, | |
| language=lang_code, | |
| tstamp=row["tstamp"], | |
| ) | |
| ) | |
| return battles, count_dict, count_leak, all_ips | |
| def clean_battle_data( | |
| log_files, | |
| exclude_model_names, | |
| ban_ip_list=None, | |
| sanitize_ip=False, | |
| anony_only=False, | |
| num_threads=16, | |
| ): | |
| data = read_file_parallel(log_files, num_threads=16) | |
| battles = [] | |
| count_dict = {} | |
| count_leak = {} | |
| all_ips = {} | |
| with Pool(num_threads) as p: | |
| # split data into chunks | |
| chunk_size = len(data) // min(100, len(data)) | |
| data_chunks = [ | |
| data[i : i + chunk_size] for i in range(0, len(data), chunk_size) | |
| ] | |
| args_list = [ | |
| (data_chunk, exclude_model_names, sanitize_ip, ban_ip_list) | |
| for data_chunk in data_chunks | |
| ] | |
| ret_all = list(tqdm(p.starmap(process_data, args_list), total=len(data_chunks))) | |
| for ret in ret_all: | |
| sub_battles, sub_count_dict, sub_count_leak, sub_all_ips = ret | |
| battles.extend(sub_battles) | |
| count_dict = dict(Counter(count_dict) + Counter(sub_count_dict)) | |
| count_leak = dict(Counter(count_leak) + Counter(sub_count_leak)) | |
| for ip in sub_all_ips: | |
| if ip not in all_ips: | |
| all_ips[ip] = sub_all_ips[ip] | |
| else: | |
| all_ips[ip]["count"] += sub_all_ips[ip]["count"] | |
| battles.sort(key=lambda x: x["tstamp"]) | |
| last_updated_tstamp = battles[-1]["tstamp"] | |
| last_updated_datetime = datetime.datetime.fromtimestamp( | |
| last_updated_tstamp, tz=timezone("US/Pacific") | |
| ).strftime("%Y-%m-%d %H:%M:%S %Z") | |
| print(f"#votes: {len(data)}") | |
| print(count_dict) | |
| print(f"#battles: {len(battles)}, #anony: {count_dict['anony']}") | |
| print(f"last-updated: {last_updated_datetime}") | |
| print(f"leaked_identity: {count_leak}") | |
| if ban_ip_list is not None: | |
| for ban_ip in ban_ip_list: | |
| if ban_ip in all_ips: | |
| del all_ips[ban_ip] | |
| print("Top 30 IPs:") | |
| print(sorted(all_ips.values(), key=lambda x: x["count"], reverse=True)[:30]) | |
| return battles | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--max-num-files", type=int) | |
| parser.add_argument( | |
| "--mode", type=str, choices=["simple", "conv_release"], default="simple" | |
| ) | |
| parser.add_argument("--exclude-model-names", type=str, nargs="+") | |
| parser.add_argument("--ban-ip-file", type=str) | |
| parser.add_argument("--sanitize-ip", action="store_true", default=False) | |
| args = parser.parse_args() | |
| log_files = get_log_files(args.max_num_files) | |
| ban_ip_list = json.load(open(args.ban_ip_file)) if args.ban_ip_file else None | |
| battles = clean_battle_data( | |
| log_files, args.exclude_model_names or [], ban_ip_list, args.sanitize_ip | |
| ) | |
| last_updated_tstamp = battles[-1]["tstamp"] | |
| cutoff_date = datetime.datetime.fromtimestamp( | |
| last_updated_tstamp, tz=timezone("US/Pacific") | |
| ).strftime("%Y%m%d") | |
| if args.mode == "simple": | |
| for x in battles: | |
| for key in [ | |
| "conversation_a", | |
| "conversation_b", | |
| "question_id", | |
| ]: | |
| del x[key] | |
| print("Samples:") | |
| for i in range(4): | |
| print(battles[i]) | |
| output = f"clean_battle_{cutoff_date}.json" | |
| elif args.mode == "conv_release": | |
| new_battles = [] | |
| for x in battles: | |
| if not x["anony"]: | |
| continue | |
| for key in []: | |
| del x[key] | |
| new_battles.append(x) | |
| battles = new_battles | |
| output = f"clean_battle_conv_{cutoff_date}.json" | |
| with open(output, "w", encoding="utf-8", errors="replace") as fout: | |
| json.dump(battles, fout, indent=2, ensure_ascii=False) | |
| print(f"Write cleaned data to {output}") | |