Spaces:
Paused
Paused
| # Usage: | |
| # python3 -m fastchat.serve.model_worker --model-path lmsys/vicuna-7b-v1.5 --model-names gpt-3.5-turbo,text-davinci-003,text-embedding-ada-002 | |
| # export OPENAI_API_BASE=http://localhost:8000/v1 | |
| # export OPENAI_API_KEY=EMPTY | |
| # wget https://raw.githubusercontent.com/hwchase17/langchain/v0.0.200/docs/modules/state_of_the_union.txt | |
| import os | |
| from langchain.chat_models import ChatOpenAI | |
| from langchain.document_loaders import TextLoader | |
| from langchain.embeddings import OpenAIEmbeddings | |
| from langchain.indexes import VectorstoreIndexCreator | |
| def test_chain(): | |
| embedding = OpenAIEmbeddings(model="text-embedding-ada-002") | |
| loader = TextLoader("state_of_the_union.txt") | |
| index = VectorstoreIndexCreator(embedding=embedding).from_loaders([loader]) | |
| llm = ChatOpenAI(model="gpt-3.5-turbo") | |
| questions = [ | |
| "Who is the speaker", | |
| "What did the president say about Ketanji Brown Jackson", | |
| "What are the threats to America", | |
| "Who are mentioned in the speech", | |
| "Who is the vice president", | |
| "How many projects were announced", | |
| ] | |
| for query in questions: | |
| print("Query:", query) | |
| print("Answer:", index.query(query, llm=llm)) | |
| if __name__ == "__main__": | |
| os.environ["OPENAI_API_BASE"] = "http://localhost:8000/v1" | |
| os.environ["OPENAI_API_KEY"] = "empty" | |
| test_chain() | |