Spaces:
Running
Running
Commit
Β·
7f9c492
1
Parent(s):
c69a91e
Add MAE tab
Browse files- .pre-commit-config.yaml +1 -1
- README.md +6 -6
- app.py +157 -24
- requirements.txt +1 -1
.pre-commit-config.yaml
CHANGED
|
@@ -27,7 +27,7 @@ repos:
|
|
| 27 |
hooks:
|
| 28 |
# run the linter
|
| 29 |
- id: ruff
|
| 30 |
-
args: [--fix]
|
| 31 |
# run the formatter
|
| 32 |
- id: ruff-format
|
| 33 |
- repo: https://github.com/pre-commit/mirrors-prettier
|
|
|
|
| 27 |
hooks:
|
| 28 |
# run the linter
|
| 29 |
- id: ruff
|
| 30 |
+
args: ["--fix", "--select=I"]
|
| 31 |
# run the formatter
|
| 32 |
- id: ruff-format
|
| 33 |
- repo: https://github.com/pre-commit/mirrors-prettier
|
README.md
CHANGED
|
@@ -1,11 +1,11 @@
|
|
| 1 |
---
|
| 2 |
title: CineMA
|
| 3 |
tags:
|
| 4 |
-
- medical
|
| 5 |
-
- cardiac
|
| 6 |
-
- MRI
|
| 7 |
-
- foundation model
|
| 8 |
-
- MAE
|
| 9 |
emoji: π
|
| 10 |
colorFrom: red
|
| 11 |
colorTo: purple
|
|
@@ -23,4 +23,4 @@ thumbnail: >-
|
|
| 23 |
# CineMA: A Foundation Model for Cine Cardiac MRI
|
| 24 |
|
| 25 |
This is a demo of CineMA, a foundation model for cine cardiac MRI. For more details, checkout our
|
| 26 |
-
[GitHub](https://github.com/mathpluscode/CineMA).
|
|
|
|
| 1 |
---
|
| 2 |
title: CineMA
|
| 3 |
tags:
|
| 4 |
+
- medical
|
| 5 |
+
- cardiac
|
| 6 |
+
- MRI
|
| 7 |
+
- foundation model
|
| 8 |
+
- MAE
|
| 9 |
emoji: π
|
| 10 |
colorFrom: red
|
| 11 |
colorTo: purple
|
|
|
|
| 23 |
# CineMA: A Foundation Model for Cine Cardiac MRI
|
| 24 |
|
| 25 |
This is a demo of CineMA, a foundation model for cine cardiac MRI. For more details, checkout our
|
| 26 |
+
[GitHub](https://github.com/mathpluscode/CineMA).
|
app.py
CHANGED
|
@@ -1,24 +1,32 @@
|
|
| 1 |
-
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
-
|
|
|
|
| 4 |
import SimpleITK as sitk # noqa: N813
|
|
|
|
| 5 |
import torch
|
| 6 |
-
from
|
| 7 |
-
from cinema import
|
| 8 |
-
from
|
| 9 |
-
from cinema.examples.inference.segmentation_sax import (
|
| 10 |
-
plot_segmentations as plot_segmentations_sax,
|
| 11 |
-
plot_volume_changes as plot_volume_changes_sax,
|
| 12 |
-
)
|
| 13 |
from cinema.examples.inference.segmentation_lax_4c import (
|
| 14 |
plot_segmentations as plot_segmentations_lax,
|
|
|
|
|
|
|
| 15 |
plot_volume_changes as plot_volume_changes_lax,
|
|
|
|
|
|
|
| 16 |
post_process as post_process_lax_segmentation,
|
| 17 |
)
|
| 18 |
-
from cinema.examples.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
from tqdm import tqdm
|
| 20 |
-
import spaces
|
| 21 |
-
import requests
|
| 22 |
|
| 23 |
# cache directories
|
| 24 |
cache_dir = Path("/tmp/.cinema")
|
|
@@ -52,18 +60,17 @@ def load_nifti_from_github(name: str) -> sitk.Image:
|
|
| 52 |
|
| 53 |
|
| 54 |
def cmr_tab():
|
| 55 |
-
with gr.Blocks() as
|
| 56 |
gr.Markdown(
|
| 57 |
"""
|
| 58 |
-
This page
|
| 59 |
-
Please adjust the settings on the right panels to select images and slices.
|
| 60 |
"""
|
| 61 |
)
|
| 62 |
with gr.Row():
|
| 63 |
-
with gr.Column(scale=
|
| 64 |
gr.Markdown("## Views")
|
| 65 |
cmr_plot = gr.Plot(show_label=False)
|
| 66 |
-
with gr.Column(scale=
|
| 67 |
gr.Markdown("## Data Settings")
|
| 68 |
image_id = gr.Slider(
|
| 69 |
minimum=1,
|
|
@@ -125,7 +132,127 @@ def cmr_tab():
|
|
| 125 |
outputs=[cmr_plot],
|
| 126 |
)
|
| 127 |
|
| 128 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
|
| 130 |
|
| 131 |
@spaces.GPU
|
|
@@ -152,7 +279,7 @@ def segmentation_sax_inference(
|
|
| 152 |
):
|
| 153 |
logits = model(batch)[view]
|
| 154 |
labels_list.append(torch.argmax(logits, dim=1)[0, ..., :n_slices])
|
| 155 |
-
labels = torch.stack(labels_list, dim=-1).detach().cpu().numpy()
|
| 156 |
return labels
|
| 157 |
|
| 158 |
|
|
@@ -181,6 +308,7 @@ def segmentation_sax(trained_dataset, seed, image_id, t_step, progress=gr.Progre
|
|
| 181 |
config_filename=f"finetuned/segmentation/{trained_dataset}_{view}/config.yaml",
|
| 182 |
cache_dir=cache_dir,
|
| 183 |
)
|
|
|
|
| 184 |
|
| 185 |
# Inference
|
| 186 |
progress(0, desc="Downloading data...")
|
|
@@ -218,7 +346,7 @@ def segmentation_sax_tab():
|
|
| 218 |
### Data
|
| 219 |
|
| 220 |
The available data is from ACDC. All images have been resampled to 1 mm Γ 1 mm Γ 10 mm and centre-cropped to 192 mm Γ 192 mm for each SAX slice.
|
| 221 |
-
Image
|
| 222 |
|
| 223 |
### Model
|
| 224 |
|
|
@@ -232,11 +360,11 @@ def segmentation_sax_tab():
|
|
| 232 |
with gr.Column(scale=3):
|
| 233 |
gr.Markdown("## Data Settings")
|
| 234 |
image_id = gr.Slider(
|
| 235 |
-
minimum=
|
| 236 |
maximum=150,
|
| 237 |
step=1,
|
| 238 |
-
label="Choose an ACDC image, ID is between
|
| 239 |
-
value=
|
| 240 |
)
|
| 241 |
t_step = gr.Slider(
|
| 242 |
minimum=1,
|
|
@@ -299,7 +427,9 @@ def segmentation_lax_inference(
|
|
| 299 |
torch.autocast("cuda", dtype=dtype, enabled=torch.cuda.is_available()),
|
| 300 |
):
|
| 301 |
logits = model(batch)[view] # (1, 4, x, y)
|
| 302 |
-
labels =
|
|
|
|
|
|
|
| 303 |
|
| 304 |
# the model seems to hallucinate an additional right ventricle and myocardium sometimes
|
| 305 |
# find the connected component that is closest to left ventricle
|
|
@@ -322,6 +452,7 @@ def segmentation_lax(seed, image_id, progress=gr.Progress()):
|
|
| 322 |
config_filename=f"finetuned/segmentation/{trained_dataset}_{view}/config.yaml",
|
| 323 |
cache_dir=cache_dir,
|
| 324 |
)
|
|
|
|
| 325 |
|
| 326 |
# Inference
|
| 327 |
progress(0, desc="Downloading data...")
|
|
@@ -418,6 +549,8 @@ with gr.Blocks(
|
|
| 418 |
with gr.Tabs() as tabs:
|
| 419 |
with gr.TabItem("Cine CMR Views"):
|
| 420 |
cmr_tab()
|
|
|
|
|
|
|
| 421 |
with gr.TabItem("Segmentation in SAX View"):
|
| 422 |
segmentation_sax_tab()
|
| 423 |
with gr.TabItem("Segmentation in LAX View"):
|
|
|
|
| 1 |
+
from pathlib import Path
|
| 2 |
+
|
| 3 |
import gradio as gr
|
| 4 |
+
import numpy as np
|
| 5 |
+
import requests
|
| 6 |
import SimpleITK as sitk # noqa: N813
|
| 7 |
+
import spaces
|
| 8 |
import torch
|
| 9 |
+
from cinema import CineMA, ConvUNetR
|
| 10 |
+
from cinema.examples.cine_cmr import plot_cmr_views
|
| 11 |
+
from cinema.examples.inference.mae import plot_mae_reconstruction, reconstruct_images
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
from cinema.examples.inference.segmentation_lax_4c import (
|
| 13 |
plot_segmentations as plot_segmentations_lax,
|
| 14 |
+
)
|
| 15 |
+
from cinema.examples.inference.segmentation_lax_4c import (
|
| 16 |
plot_volume_changes as plot_volume_changes_lax,
|
| 17 |
+
)
|
| 18 |
+
from cinema.examples.inference.segmentation_lax_4c import (
|
| 19 |
post_process as post_process_lax_segmentation,
|
| 20 |
)
|
| 21 |
+
from cinema.examples.inference.segmentation_sax import (
|
| 22 |
+
plot_segmentations as plot_segmentations_sax,
|
| 23 |
+
)
|
| 24 |
+
from cinema.examples.inference.segmentation_sax import (
|
| 25 |
+
plot_volume_changes as plot_volume_changes_sax,
|
| 26 |
+
)
|
| 27 |
+
from huggingface_hub import hf_hub_download
|
| 28 |
+
from monai.transforms import Compose, ScaleIntensityd, SpatialPadd
|
| 29 |
from tqdm import tqdm
|
|
|
|
|
|
|
| 30 |
|
| 31 |
# cache directories
|
| 32 |
cache_dir = Path("/tmp/.cinema")
|
|
|
|
| 60 |
|
| 61 |
|
| 62 |
def cmr_tab():
|
| 63 |
+
with gr.Blocks() as cmr_interface:
|
| 64 |
gr.Markdown(
|
| 65 |
"""
|
| 66 |
+
This page illustrates the spatial orientation of short-axis (SAX) and long-axis (LAX) views in 3D. Use the control panels on the right to select specific images and slices.
|
|
|
|
| 67 |
"""
|
| 68 |
)
|
| 69 |
with gr.Row():
|
| 70 |
+
with gr.Column(scale=5):
|
| 71 |
gr.Markdown("## Views")
|
| 72 |
cmr_plot = gr.Plot(show_label=False)
|
| 73 |
+
with gr.Column(scale=3):
|
| 74 |
gr.Markdown("## Data Settings")
|
| 75 |
image_id = gr.Slider(
|
| 76 |
minimum=1,
|
|
|
|
| 132 |
outputs=[cmr_plot],
|
| 133 |
)
|
| 134 |
|
| 135 |
+
return cmr_interface
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
@spaces.GPU
|
| 139 |
+
def mae_inference(
|
| 140 |
+
batch: dict[str, torch.Tensor],
|
| 141 |
+
transform: Compose,
|
| 142 |
+
model: CineMA,
|
| 143 |
+
mask_ratio: float,
|
| 144 |
+
) -> tuple[dict[str, np.ndarray], dict[str, np.ndarray], dict[str, np.ndarray]]:
|
| 145 |
+
model.to(device)
|
| 146 |
+
sax_slices = batch["sax"].shape[-1]
|
| 147 |
+
batch = transform(batch)
|
| 148 |
+
batch = {k: v[None, ...].to(device=device, dtype=dtype) for k, v in batch.items()}
|
| 149 |
+
with (
|
| 150 |
+
torch.no_grad(),
|
| 151 |
+
torch.autocast("cuda", dtype=dtype, enabled=torch.cuda.is_available()),
|
| 152 |
+
):
|
| 153 |
+
_, pred_dict, enc_mask_dict, _ = model(batch, enc_mask_ratio=mask_ratio)
|
| 154 |
+
grid_size_dict = {
|
| 155 |
+
k: v.patch_embed.grid_size for k, v in model.enc_down_dict.items()
|
| 156 |
+
}
|
| 157 |
+
reconstructed_dict, masks_dict = reconstruct_images(
|
| 158 |
+
batch,
|
| 159 |
+
pred_dict,
|
| 160 |
+
enc_mask_dict,
|
| 161 |
+
model.dec_patch_size_dict,
|
| 162 |
+
grid_size_dict,
|
| 163 |
+
sax_slices,
|
| 164 |
+
)
|
| 165 |
+
batch = {
|
| 166 |
+
k: v.detach().to(torch.float32).cpu().numpy()[0, 0]
|
| 167 |
+
for k, v in batch.items()
|
| 168 |
+
}
|
| 169 |
+
batch["sax"] = batch["sax"][..., :sax_slices]
|
| 170 |
+
return batch, reconstructed_dict, masks_dict
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
def mae(image_id, mask_ratio, progress=gr.Progress()):
|
| 174 |
+
t = 4 # which time frame to use
|
| 175 |
+
progress(0, desc="Downloading model...")
|
| 176 |
+
model = CineMA.from_pretrained()
|
| 177 |
+
model.eval()
|
| 178 |
+
|
| 179 |
+
progress(0, desc="Downloading data...")
|
| 180 |
+
lax_2c_image = load_nifti_from_github(f"ukb/{image_id}/{image_id}_lax_2c.nii.gz")
|
| 181 |
+
lax_3c_image = load_nifti_from_github(f"ukb/{image_id}/{image_id}_lax_3c.nii.gz")
|
| 182 |
+
lax_4c_image = load_nifti_from_github(f"ukb/{image_id}/{image_id}_lax_4c.nii.gz")
|
| 183 |
+
sax_image = load_nifti_from_github(f"ukb/{image_id}/{image_id}_sax.nii.gz")
|
| 184 |
+
transform = Compose(
|
| 185 |
+
[
|
| 186 |
+
ScaleIntensityd(keys=("sax", "lax_2c", "lax_3c", "lax_4c")),
|
| 187 |
+
SpatialPadd(keys="sax", spatial_size=(192, 192, 16), method="end"),
|
| 188 |
+
SpatialPadd(
|
| 189 |
+
keys=("lax_2c", "lax_3c", "lax_4c"),
|
| 190 |
+
spatial_size=(256, 256),
|
| 191 |
+
method="end",
|
| 192 |
+
),
|
| 193 |
+
]
|
| 194 |
+
)
|
| 195 |
+
lax_2c_image_np = np.transpose(sitk.GetArrayFromImage(lax_2c_image))
|
| 196 |
+
lax_3c_image_np = np.transpose(sitk.GetArrayFromImage(lax_3c_image))
|
| 197 |
+
lax_4c_image_np = np.transpose(sitk.GetArrayFromImage(lax_4c_image))
|
| 198 |
+
sax_image_np = np.transpose(sitk.GetArrayFromImage(sax_image))
|
| 199 |
+
image_dict = {
|
| 200 |
+
"sax": sax_image_np[None, ..., t],
|
| 201 |
+
"lax_2c": lax_2c_image_np[None, ..., 0, t],
|
| 202 |
+
"lax_3c": lax_3c_image_np[None, ..., 0, t],
|
| 203 |
+
"lax_4c": lax_4c_image_np[None, ..., 0, t],
|
| 204 |
+
}
|
| 205 |
+
batch = {k: torch.from_numpy(v) for k, v in image_dict.items()}
|
| 206 |
+
|
| 207 |
+
progress(0.5, desc="Running inference...")
|
| 208 |
+
batch, reconstructed_dict, masks_dict = mae_inference(
|
| 209 |
+
batch, transform, model, mask_ratio
|
| 210 |
+
)
|
| 211 |
+
progress(1, desc="Plotting results...")
|
| 212 |
+
|
| 213 |
+
fig = plot_mae_reconstruction(
|
| 214 |
+
batch,
|
| 215 |
+
reconstructed_dict,
|
| 216 |
+
masks_dict,
|
| 217 |
+
)
|
| 218 |
+
return fig
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
def mae_tab():
|
| 222 |
+
with gr.Blocks() as mae_interface:
|
| 223 |
+
gr.Markdown(
|
| 224 |
+
"""
|
| 225 |
+
This page illustrates the masking and reconstruction process of the masked autoencoder. The model was trained with mask ratio 0.75 over 74,000 studies.
|
| 226 |
+
"""
|
| 227 |
+
)
|
| 228 |
+
with gr.Row():
|
| 229 |
+
with gr.Column(scale=5):
|
| 230 |
+
gr.Markdown("## Reconstruction")
|
| 231 |
+
plot = gr.Plot(show_label=False)
|
| 232 |
+
with gr.Column(scale=3):
|
| 233 |
+
gr.Markdown("## Data Settings")
|
| 234 |
+
image_id = gr.Slider(
|
| 235 |
+
minimum=1,
|
| 236 |
+
maximum=4,
|
| 237 |
+
step=1,
|
| 238 |
+
label="Choose an image, ID is between 1 and 4",
|
| 239 |
+
value=1,
|
| 240 |
+
)
|
| 241 |
+
mask_ratio = gr.Slider(
|
| 242 |
+
minimum=0.05,
|
| 243 |
+
maximum=1,
|
| 244 |
+
step=0.05,
|
| 245 |
+
label="Mask ratio",
|
| 246 |
+
value=0.75,
|
| 247 |
+
)
|
| 248 |
+
run_button = gr.Button("Run Masked Autoencoder", variant="primary")
|
| 249 |
+
run_button.click(
|
| 250 |
+
fn=mae,
|
| 251 |
+
inputs=[image_id, mask_ratio],
|
| 252 |
+
outputs=[plot],
|
| 253 |
+
)
|
| 254 |
+
|
| 255 |
+
return mae_interface
|
| 256 |
|
| 257 |
|
| 258 |
@spaces.GPU
|
|
|
|
| 279 |
):
|
| 280 |
logits = model(batch)[view]
|
| 281 |
labels_list.append(torch.argmax(logits, dim=1)[0, ..., :n_slices])
|
| 282 |
+
labels = torch.stack(labels_list, dim=-1).detach().to(torch.float32).cpu().numpy()
|
| 283 |
return labels
|
| 284 |
|
| 285 |
|
|
|
|
| 308 |
config_filename=f"finetuned/segmentation/{trained_dataset}_{view}/config.yaml",
|
| 309 |
cache_dir=cache_dir,
|
| 310 |
)
|
| 311 |
+
model.eval()
|
| 312 |
|
| 313 |
# Inference
|
| 314 |
progress(0, desc="Downloading data...")
|
|
|
|
| 346 |
### Data
|
| 347 |
|
| 348 |
The available data is from ACDC. All images have been resampled to 1 mm Γ 1 mm Γ 10 mm and centre-cropped to 192 mm Γ 192 mm for each SAX slice.
|
| 349 |
+
Image 101 - 150 are from the test set.
|
| 350 |
|
| 351 |
### Model
|
| 352 |
|
|
|
|
| 360 |
with gr.Column(scale=3):
|
| 361 |
gr.Markdown("## Data Settings")
|
| 362 |
image_id = gr.Slider(
|
| 363 |
+
minimum=101,
|
| 364 |
maximum=150,
|
| 365 |
step=1,
|
| 366 |
+
label="Choose an ACDC image, ID is between 101 and 150",
|
| 367 |
+
value=101,
|
| 368 |
)
|
| 369 |
t_step = gr.Slider(
|
| 370 |
minimum=1,
|
|
|
|
| 427 |
torch.autocast("cuda", dtype=dtype, enabled=torch.cuda.is_available()),
|
| 428 |
):
|
| 429 |
logits = model(batch)[view] # (1, 4, x, y)
|
| 430 |
+
labels = (
|
| 431 |
+
torch.argmax(logits, dim=1)[0].detach().to(torch.float32).cpu().numpy()
|
| 432 |
+
) # (x, y)
|
| 433 |
|
| 434 |
# the model seems to hallucinate an additional right ventricle and myocardium sometimes
|
| 435 |
# find the connected component that is closest to left ventricle
|
|
|
|
| 452 |
config_filename=f"finetuned/segmentation/{trained_dataset}_{view}/config.yaml",
|
| 453 |
cache_dir=cache_dir,
|
| 454 |
)
|
| 455 |
+
model.eval()
|
| 456 |
|
| 457 |
# Inference
|
| 458 |
progress(0, desc="Downloading data...")
|
|
|
|
| 549 |
with gr.Tabs() as tabs:
|
| 550 |
with gr.TabItem("Cine CMR Views"):
|
| 551 |
cmr_tab()
|
| 552 |
+
with gr.TabItem("Masked Autoencoder"):
|
| 553 |
+
mae_tab()
|
| 554 |
with gr.TabItem("Segmentation in SAX View"):
|
| 555 |
segmentation_sax_tab()
|
| 556 |
with gr.TabItem("Segmentation in LAX View"):
|
requirements.txt
CHANGED
|
@@ -17,6 +17,6 @@ scikit-learn==1.6.1
|
|
| 17 |
scipy==1.15.2
|
| 18 |
spaces==0.36.0
|
| 19 |
timm==1.0.15
|
| 20 |
-
git+https://github.com/mathpluscode/CineMA@
|
| 21 |
--extra-index-url https://download.pytorch.org/whl/cu113
|
| 22 |
torch==2.5.1
|
|
|
|
| 17 |
scipy==1.15.2
|
| 18 |
spaces==0.36.0
|
| 19 |
timm==1.0.15
|
| 20 |
+
git+https://github.com/mathpluscode/CineMA@3ace4d79ee037f95e8767b35c7bc97d511f8b9c1#egg=cinema
|
| 21 |
--extra-index-url https://download.pytorch.org/whl/cu113
|
| 22 |
torch==2.5.1
|