Spaces:
Running
Running
Commit
Β·
c3b3ff1
1
Parent(s):
5826e7f
Update layout
Browse files- .gitignore +6 -0
- app.py +135 -117
- requirements.txt +1 -1
.gitignore
CHANGED
|
@@ -2,3 +2,9 @@
|
|
| 2 |
.DS_Store
|
| 3 |
node_modules/
|
| 4 |
src/cache/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
.DS_Store
|
| 3 |
node_modules/
|
| 4 |
src/cache/
|
| 5 |
+
.locks/
|
| 6 |
+
ukb/
|
| 7 |
+
*.gif
|
| 8 |
+
*.png
|
| 9 |
+
models--mathpluscode--CineMA/
|
| 10 |
+
datasets--mathpluscode--ACDC/
|
app.py
CHANGED
|
@@ -10,6 +10,7 @@ import torch
|
|
| 10 |
from cinema import CineMA, ConvUNetR, ConvViT, heatmap_soft_argmax
|
| 11 |
from cinema.examples.cine_cmr import plot_cmr_views
|
| 12 |
from cinema.examples.inference.landmark_heatmap import (
|
|
|
|
| 13 |
plot_landmarks,
|
| 14 |
plot_lv,
|
| 15 |
)
|
|
@@ -81,8 +82,8 @@ def cmr_tab():
|
|
| 81 |
minimum=1,
|
| 82 |
maximum=4,
|
| 83 |
step=1,
|
| 84 |
-
label="Choose an image
|
| 85 |
-
value=
|
| 86 |
)
|
| 87 |
# Placeholder for slice slider, will update dynamically
|
| 88 |
slice_idx = gr.Slider(
|
|
@@ -90,7 +91,7 @@ def cmr_tab():
|
|
| 90 |
maximum=8,
|
| 91 |
step=1,
|
| 92 |
label="SAX slice to visualize",
|
| 93 |
-
value=
|
| 94 |
)
|
| 95 |
|
| 96 |
def get_num_slices(image_id):
|
|
@@ -99,7 +100,7 @@ def cmr_tab():
|
|
| 99 |
|
| 100 |
def update_slice_slider(image_id):
|
| 101 |
num_slices = get_num_slices(image_id)
|
| 102 |
-
return gr.update(maximum=num_slices - 1, value=
|
| 103 |
|
| 104 |
def fn(image_id, slice_idx):
|
| 105 |
lax_2c_image = load_nifti_from_github(
|
|
@@ -125,7 +126,7 @@ def cmr_tab():
|
|
| 125 |
|
| 126 |
# When image changes, update the slice slider and plot
|
| 127 |
gr.on(
|
| 128 |
-
fn=lambda image_id: [update_slice_slider(image_id), fn(image_id,
|
| 129 |
inputs=[image_id],
|
| 130 |
outputs=[slice_idx, cmr_plot],
|
| 131 |
)
|
|
@@ -238,9 +239,11 @@ def mae_tab():
|
|
| 238 |
with gr.Blocks() as mae_interface:
|
| 239 |
gr.Markdown(
|
| 240 |
"""
|
| 241 |
-
This page demonstrates the masking and reconstruction process
|
| 242 |
"""
|
| 243 |
)
|
|
|
|
|
|
|
| 244 |
with gr.Row():
|
| 245 |
with gr.Column(scale=5):
|
| 246 |
gr.Markdown("## Reconstruction")
|
|
@@ -249,14 +252,14 @@ def mae_tab():
|
|
| 249 |
type="filepath",
|
| 250 |
label="Masked Autoencoder Reconstruction",
|
| 251 |
)
|
| 252 |
-
with gr.Column(scale=
|
| 253 |
gr.Markdown("## Data Settings")
|
| 254 |
image_id = gr.Slider(
|
| 255 |
minimum=1,
|
| 256 |
maximum=4,
|
| 257 |
step=1,
|
| 258 |
-
label="Choose an image
|
| 259 |
-
value=
|
| 260 |
)
|
| 261 |
mask_ratio = gr.Slider(
|
| 262 |
minimum=0.05,
|
|
@@ -265,7 +268,6 @@ def mae_tab():
|
|
| 265 |
label="Mask ratio",
|
| 266 |
value=0.75,
|
| 267 |
)
|
| 268 |
-
run_button = gr.Button("Run masked autoencoder", variant="primary")
|
| 269 |
|
| 270 |
run_button.click(
|
| 271 |
fn=mae,
|
|
@@ -376,9 +378,10 @@ def segmentation_sax_tab():
|
|
| 376 |
with gr.Blocks() as sax_interface:
|
| 377 |
gr.Markdown(
|
| 378 |
"""
|
| 379 |
-
This page demonstrates the segmentation of cardiac structures in the short-axis (SAX) view.
|
| 380 |
"""
|
| 381 |
)
|
|
|
|
| 382 |
|
| 383 |
with gr.Row():
|
| 384 |
with gr.Column(scale=4):
|
|
@@ -391,43 +394,47 @@ def segmentation_sax_tab():
|
|
| 391 |
### Model
|
| 392 |
|
| 393 |
The available models are finetuned on different datasets ([ACDC](https://www.creatis.insa-lyon.fr/Challenge/acdc/), [M&Ms](https://www.ub.edu/mnms/), and [M&Ms2](https://www.ub.edu/mnms-2/)). For each dataset, there are three models finetuned with seeds: 0, 1, 2.
|
| 394 |
-
|
| 395 |
-
### Visualisation
|
| 396 |
-
|
| 397 |
-
The left figure shows the segmentation of ventricles and myocardium at every n time step across all SAX slices.
|
| 398 |
-
The right figure shows the volumes across all time frames and estimates the ejection fraction (EF) for the left ventricle (LV) and right ventricle (RV).
|
| 399 |
""")
|
| 400 |
-
with gr.Column(scale=
|
| 401 |
-
gr.
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 431 |
|
| 432 |
with gr.Row():
|
| 433 |
with gr.Column():
|
|
@@ -535,9 +542,10 @@ def segmentation_lax_tab():
|
|
| 535 |
with gr.Blocks() as lax_interface:
|
| 536 |
gr.Markdown(
|
| 537 |
"""
|
| 538 |
-
This page demonstrates the segmentation of cardiac structures in the long-axis (LAX) four-chamber (4C) view.
|
| 539 |
"""
|
| 540 |
)
|
|
|
|
| 541 |
|
| 542 |
with gr.Row():
|
| 543 |
with gr.Column(scale=4):
|
|
@@ -550,31 +558,35 @@ def segmentation_lax_tab():
|
|
| 550 |
### Model
|
| 551 |
|
| 552 |
The available models are finetuned on [M&Ms2](https://www.ub.edu/mnms-2/). There are three models finetuned with seeds: 0, 1, 2.
|
| 553 |
-
|
| 554 |
-
### Visualisation
|
| 555 |
-
|
| 556 |
-
The left figure shows the segmentation of ventricles and myocardium across all time frames.
|
| 557 |
-
The right figure shows the volumes across all time frames and estimates the ejection fraction (EF).
|
| 558 |
""")
|
| 559 |
-
with gr.Column(scale=
|
| 560 |
-
gr.
|
| 561 |
-
|
| 562 |
-
|
| 563 |
-
|
| 564 |
-
|
| 565 |
-
|
| 566 |
-
|
| 567 |
-
|
| 568 |
-
|
| 569 |
-
|
| 570 |
-
|
| 571 |
-
|
| 572 |
-
|
| 573 |
-
|
| 574 |
-
|
| 575 |
-
|
| 576 |
-
|
| 577 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 578 |
|
| 579 |
with gr.Row():
|
| 580 |
with gr.Column():
|
|
@@ -707,17 +719,18 @@ def landmark(image_id, view, method, seed, progress=gr.Progress()):
|
|
| 707 |
)
|
| 708 |
|
| 709 |
if method == "heatmap":
|
| 710 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 711 |
elif method == "coordinate":
|
| 712 |
coords = landmark_coordinate_inference(images, view, transform, model, progress)
|
|
|
|
|
|
|
| 713 |
else:
|
| 714 |
raise ValueError(f"Invalid method: {method}")
|
| 715 |
|
| 716 |
-
progress(1, desc="Inference finished. Plotting ...")
|
| 717 |
-
|
| 718 |
-
# Plot landmarks in GIF
|
| 719 |
-
plot_landmarks(images, coords, landmark_path)
|
| 720 |
-
|
| 721 |
# Plot LV change in PNG
|
| 722 |
plot_lv(coords, lv_path)
|
| 723 |
|
|
@@ -728,9 +741,12 @@ def landmark_tab():
|
|
| 728 |
with gr.Blocks() as landmark_interface:
|
| 729 |
gr.Markdown(
|
| 730 |
"""
|
| 731 |
-
This page demonstrates landmark localisation in the long-axis (LAX) two-chamber (2C) and four-chamber (4C) views.
|
| 732 |
"""
|
| 733 |
)
|
|
|
|
|
|
|
|
|
|
| 734 |
|
| 735 |
with gr.Row():
|
| 736 |
with gr.Column(scale=4):
|
|
@@ -749,43 +765,45 @@ def landmark_tab():
|
|
| 749 |
- **Coordinate**: predicts landmark coordinates directly
|
| 750 |
|
| 751 |
For each type, there are three models finetuned with seeds: 0, 1, 2.
|
| 752 |
-
|
| 753 |
-
### Visualisation
|
| 754 |
-
|
| 755 |
-
The left figure shows the landmark positions across all time frames.
|
| 756 |
-
The right figure shows the length of the left ventricle across all time frames and the estimates of two metrics:
|
| 757 |
-
- Mitral annular plane systolic excursion (MAPSE)
|
| 758 |
-
- Global longitudinal shortening (GLS)
|
| 759 |
""")
|
| 760 |
-
with gr.Column(scale=
|
| 761 |
-
gr.
|
| 762 |
-
|
| 763 |
-
|
| 764 |
-
|
| 765 |
-
|
| 766 |
-
|
| 767 |
-
|
| 768 |
-
|
| 769 |
-
|
| 770 |
-
|
| 771 |
-
|
| 772 |
-
|
| 773 |
-
|
| 774 |
-
|
| 775 |
-
|
| 776 |
-
|
| 777 |
-
|
| 778 |
-
|
| 779 |
-
|
| 780 |
-
|
| 781 |
-
|
| 782 |
-
|
| 783 |
-
|
| 784 |
-
|
| 785 |
-
|
| 786 |
-
|
| 787 |
-
|
| 788 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 789 |
|
| 790 |
with gr.Row():
|
| 791 |
with gr.Column():
|
|
@@ -816,9 +834,9 @@ with gr.Blocks(
|
|
| 816 |
"""
|
| 817 |
# CineMA: A Foundation Model for Cine Cardiac MRI π₯π«
|
| 818 |
|
| 819 |
-
π The following
|
| 820 |
β±οΈ The examples may take 10-60 seconds, if not cached, to download data and model, perform inference, and render plots.<br>
|
| 821 |
-
π For more details, check out our [GitHub](https://github.com/mathpluscode/CineMA).
|
| 822 |
"""
|
| 823 |
)
|
| 824 |
|
|
|
|
| 10 |
from cinema import CineMA, ConvUNetR, ConvViT, heatmap_soft_argmax
|
| 11 |
from cinema.examples.cine_cmr import plot_cmr_views
|
| 12 |
from cinema.examples.inference.landmark_heatmap import (
|
| 13 |
+
plot_heatmap_and_landmarks,
|
| 14 |
plot_landmarks,
|
| 15 |
plot_lv,
|
| 16 |
)
|
|
|
|
| 82 |
minimum=1,
|
| 83 |
maximum=4,
|
| 84 |
step=1,
|
| 85 |
+
label="Choose an image",
|
| 86 |
+
value=2,
|
| 87 |
)
|
| 88 |
# Placeholder for slice slider, will update dynamically
|
| 89 |
slice_idx = gr.Slider(
|
|
|
|
| 91 |
maximum=8,
|
| 92 |
step=1,
|
| 93 |
label="SAX slice to visualize",
|
| 94 |
+
value=1,
|
| 95 |
)
|
| 96 |
|
| 97 |
def get_num_slices(image_id):
|
|
|
|
| 100 |
|
| 101 |
def update_slice_slider(image_id):
|
| 102 |
num_slices = get_num_slices(image_id)
|
| 103 |
+
return gr.update(maximum=num_slices - 1, value=1, visible=True)
|
| 104 |
|
| 105 |
def fn(image_id, slice_idx):
|
| 106 |
lax_2c_image = load_nifti_from_github(
|
|
|
|
| 126 |
|
| 127 |
# When image changes, update the slice slider and plot
|
| 128 |
gr.on(
|
| 129 |
+
fn=lambda image_id: [update_slice_slider(image_id), fn(image_id, 1)],
|
| 130 |
inputs=[image_id],
|
| 131 |
outputs=[slice_idx, cmr_plot],
|
| 132 |
)
|
|
|
|
| 239 |
with gr.Blocks() as mae_interface:
|
| 240 |
gr.Markdown(
|
| 241 |
"""
|
| 242 |
+
This page demonstrates the masking and reconstruction process. The model was trained with a mask ratio of 0.75. Click the button below to launch the inference. β¬οΈ
|
| 243 |
"""
|
| 244 |
)
|
| 245 |
+
run_button = gr.Button("Launch reconstruction", variant="primary")
|
| 246 |
+
|
| 247 |
with gr.Row():
|
| 248 |
with gr.Column(scale=5):
|
| 249 |
gr.Markdown("## Reconstruction")
|
|
|
|
| 252 |
type="filepath",
|
| 253 |
label="Masked Autoencoder Reconstruction",
|
| 254 |
)
|
| 255 |
+
with gr.Column(scale=5):
|
| 256 |
gr.Markdown("## Data Settings")
|
| 257 |
image_id = gr.Slider(
|
| 258 |
minimum=1,
|
| 259 |
maximum=4,
|
| 260 |
step=1,
|
| 261 |
+
label="Choose an image",
|
| 262 |
+
value=2,
|
| 263 |
)
|
| 264 |
mask_ratio = gr.Slider(
|
| 265 |
minimum=0.05,
|
|
|
|
| 268 |
label="Mask ratio",
|
| 269 |
value=0.75,
|
| 270 |
)
|
|
|
|
| 271 |
|
| 272 |
run_button.click(
|
| 273 |
fn=mae,
|
|
|
|
| 378 |
with gr.Blocks() as sax_interface:
|
| 379 |
gr.Markdown(
|
| 380 |
"""
|
| 381 |
+
This page demonstrates the segmentation of cardiac structures in the short-axis (SAX) view. Click the button below to launch the inference. β¬οΈ
|
| 382 |
"""
|
| 383 |
)
|
| 384 |
+
run_button = gr.Button("Launch segmentation inference", variant="primary")
|
| 385 |
|
| 386 |
with gr.Row():
|
| 387 |
with gr.Column(scale=4):
|
|
|
|
| 394 |
### Model
|
| 395 |
|
| 396 |
The available models are finetuned on different datasets ([ACDC](https://www.creatis.insa-lyon.fr/Challenge/acdc/), [M&Ms](https://www.ub.edu/mnms/), and [M&Ms2](https://www.ub.edu/mnms-2/)). For each dataset, there are three models finetuned with seeds: 0, 1, 2.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 397 |
""")
|
| 398 |
+
with gr.Column(scale=6):
|
| 399 |
+
with gr.Row():
|
| 400 |
+
with gr.Column(scale=1):
|
| 401 |
+
gr.Markdown("## Data Settings")
|
| 402 |
+
image_id = gr.Slider(
|
| 403 |
+
minimum=101,
|
| 404 |
+
maximum=150,
|
| 405 |
+
step=1,
|
| 406 |
+
label="Choose an image",
|
| 407 |
+
value=150,
|
| 408 |
+
)
|
| 409 |
+
t_step = gr.Slider(
|
| 410 |
+
minimum=1,
|
| 411 |
+
maximum=10,
|
| 412 |
+
step=1,
|
| 413 |
+
label="Choose the gap between time frames",
|
| 414 |
+
value=3,
|
| 415 |
+
)
|
| 416 |
+
with gr.Column(scale=1):
|
| 417 |
+
gr.Markdown("## Model Settings")
|
| 418 |
+
trained_dataset = gr.Dropdown(
|
| 419 |
+
choices=["ACDC", "M&MS", "M&MS2"],
|
| 420 |
+
label="Choose which dataset the model was finetuned on",
|
| 421 |
+
value="ACDC",
|
| 422 |
+
)
|
| 423 |
+
seed = gr.Slider(
|
| 424 |
+
minimum=0,
|
| 425 |
+
maximum=2,
|
| 426 |
+
step=1,
|
| 427 |
+
label="Choose which seed the finetuning used",
|
| 428 |
+
value=1,
|
| 429 |
+
)
|
| 430 |
+
|
| 431 |
+
# Visualisation description block
|
| 432 |
+
gr.Markdown("""
|
| 433 |
+
## Visualisation
|
| 434 |
+
|
| 435 |
+
The left figure shows the segmentation at every n time step across all SAX slices.
|
| 436 |
+
The right figure shows the volumes across time frames and estimates the ejection fraction (EF) for the left ventricle (LV) and right ventricle (RV).
|
| 437 |
+
""")
|
| 438 |
|
| 439 |
with gr.Row():
|
| 440 |
with gr.Column():
|
|
|
|
| 542 |
with gr.Blocks() as lax_interface:
|
| 543 |
gr.Markdown(
|
| 544 |
"""
|
| 545 |
+
This page demonstrates the segmentation of cardiac structures in the long-axis (LAX) four-chamber (4C) view. Click the button below to launch the inference. β¬οΈ
|
| 546 |
"""
|
| 547 |
)
|
| 548 |
+
run_button = gr.Button("Launch segmentation inference", variant="primary")
|
| 549 |
|
| 550 |
with gr.Row():
|
| 551 |
with gr.Column(scale=4):
|
|
|
|
| 558 |
### Model
|
| 559 |
|
| 560 |
The available models are finetuned on [M&Ms2](https://www.ub.edu/mnms-2/). There are three models finetuned with seeds: 0, 1, 2.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 561 |
""")
|
| 562 |
+
with gr.Column(scale=6):
|
| 563 |
+
with gr.Row():
|
| 564 |
+
with gr.Column(scale=1):
|
| 565 |
+
gr.Markdown("## Data Settings")
|
| 566 |
+
image_id = gr.Slider(
|
| 567 |
+
minimum=1,
|
| 568 |
+
maximum=4,
|
| 569 |
+
step=1,
|
| 570 |
+
label="Choose an image",
|
| 571 |
+
value=2,
|
| 572 |
+
)
|
| 573 |
+
with gr.Column(scale=1):
|
| 574 |
+
gr.Markdown("## Model Settings")
|
| 575 |
+
seed = gr.Slider(
|
| 576 |
+
minimum=0,
|
| 577 |
+
maximum=2,
|
| 578 |
+
step=1,
|
| 579 |
+
label="Choose which seed the finetuning used",
|
| 580 |
+
value=1,
|
| 581 |
+
)
|
| 582 |
+
|
| 583 |
+
# Visualisation description block
|
| 584 |
+
gr.Markdown("""
|
| 585 |
+
## Visualisation
|
| 586 |
+
|
| 587 |
+
The left figure shows the segmentation across time frames.
|
| 588 |
+
The right figure shows the volumes across time frames and estimates the ejection fraction (EF).
|
| 589 |
+
""")
|
| 590 |
|
| 591 |
with gr.Row():
|
| 592 |
with gr.Column():
|
|
|
|
| 719 |
)
|
| 720 |
|
| 721 |
if method == "heatmap":
|
| 722 |
+
probs, coords = landmark_heatmap_inference(
|
| 723 |
+
images, view, transform, model, progress
|
| 724 |
+
)
|
| 725 |
+
progress(1, desc="Inference finished. Plotting ...")
|
| 726 |
+
plot_heatmap_and_landmarks(images, probs, coords, landmark_path)
|
| 727 |
elif method == "coordinate":
|
| 728 |
coords = landmark_coordinate_inference(images, view, transform, model, progress)
|
| 729 |
+
progress(1, desc="Inference finished. Plotting ...")
|
| 730 |
+
plot_landmarks(images, coords, landmark_path)
|
| 731 |
else:
|
| 732 |
raise ValueError(f"Invalid method: {method}")
|
| 733 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 734 |
# Plot LV change in PNG
|
| 735 |
plot_lv(coords, lv_path)
|
| 736 |
|
|
|
|
| 741 |
with gr.Blocks() as landmark_interface:
|
| 742 |
gr.Markdown(
|
| 743 |
"""
|
| 744 |
+
This page demonstrates landmark localisation in the long-axis (LAX) two-chamber (2C) and four-chamber (4C) views. Click the button below to launch the inference. β¬οΈ
|
| 745 |
"""
|
| 746 |
)
|
| 747 |
+
run_button = gr.Button(
|
| 748 |
+
"Launch landmark localisation inference", variant="primary"
|
| 749 |
+
)
|
| 750 |
|
| 751 |
with gr.Row():
|
| 752 |
with gr.Column(scale=4):
|
|
|
|
| 765 |
- **Coordinate**: predicts landmark coordinates directly
|
| 766 |
|
| 767 |
For each type, there are three models finetuned with seeds: 0, 1, 2.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 768 |
""")
|
| 769 |
+
with gr.Column(scale=6):
|
| 770 |
+
with gr.Row():
|
| 771 |
+
with gr.Column(scale=1):
|
| 772 |
+
gr.Markdown("## Data Settings")
|
| 773 |
+
image_id = gr.Slider(
|
| 774 |
+
minimum=1,
|
| 775 |
+
maximum=4,
|
| 776 |
+
step=1,
|
| 777 |
+
label="Choose an image",
|
| 778 |
+
value=2,
|
| 779 |
+
)
|
| 780 |
+
view = gr.Dropdown(
|
| 781 |
+
choices=["LAX 2C", "LAX 4C"],
|
| 782 |
+
label="Choose which view to localise the landmarks",
|
| 783 |
+
value="LAX 2C",
|
| 784 |
+
)
|
| 785 |
+
with gr.Column(scale=1):
|
| 786 |
+
gr.Markdown("## Model Settings")
|
| 787 |
+
method = gr.Dropdown(
|
| 788 |
+
choices=["Heatmap", "Coordinate"],
|
| 789 |
+
label="Choose which method to use",
|
| 790 |
+
value="Heatmap",
|
| 791 |
+
)
|
| 792 |
+
seed = gr.Slider(
|
| 793 |
+
minimum=0,
|
| 794 |
+
maximum=2,
|
| 795 |
+
step=1,
|
| 796 |
+
label="Choose which seed the finetuning used",
|
| 797 |
+
value=1,
|
| 798 |
+
)
|
| 799 |
+
|
| 800 |
+
# Visualisation description block
|
| 801 |
+
gr.Markdown("""
|
| 802 |
+
## Visualisation
|
| 803 |
+
|
| 804 |
+
The left figure shows the landmark positions across time frames.
|
| 805 |
+
The right figure shows the length of the left ventricle across time frames and estimates mitral annular plane systolic excursion (MAPSE) and global longitudinal shortening (GLS).
|
| 806 |
+
""")
|
| 807 |
|
| 808 |
with gr.Row():
|
| 809 |
with gr.Column():
|
|
|
|
| 834 |
"""
|
| 835 |
# CineMA: A Foundation Model for Cine Cardiac MRI π₯π«
|
| 836 |
|
| 837 |
+
π The following demonstrations showcase the capabilities of CineMA in multiple tasks. Click the button to launch the inference.<br>
|
| 838 |
β±οΈ The examples may take 10-60 seconds, if not cached, to download data and model, perform inference, and render plots.<br>
|
| 839 |
+
π For more details, check out our [GitHub repository](https://github.com/mathpluscode/CineMA).
|
| 840 |
"""
|
| 841 |
)
|
| 842 |
|
requirements.txt
CHANGED
|
@@ -17,6 +17,6 @@ scikit-learn==1.6.1
|
|
| 17 |
scipy==1.15.2
|
| 18 |
spaces==0.36.0
|
| 19 |
timm==1.0.15
|
| 20 |
-
git+https://github.com/mathpluscode/CineMA@
|
| 21 |
--extra-index-url https://download.pytorch.org/whl/cu113
|
| 22 |
torch==2.5.1
|
|
|
|
| 17 |
scipy==1.15.2
|
| 18 |
spaces==0.36.0
|
| 19 |
timm==1.0.15
|
| 20 |
+
git+https://github.com/mathpluscode/CineMA@dd9c19cfe5f09c26dbf29373f92ced2f9a0648b7#egg=cinema
|
| 21 |
--extra-index-url https://download.pytorch.org/whl/cu113
|
| 22 |
torch==2.5.1
|