Spaces:
Runtime error
Runtime error
| import numpy as np | |
| import gradio as gr | |
| import onnxruntime as ort | |
| from matplotlib import pyplot as plt | |
| from huggingface_hub import hf_hub_download | |
| def create_model_for_provider(model_path, provider="CPUExecutionProvider"): | |
| options = ort.SessionOptions() | |
| options.intra_op_num_threads = 1 | |
| options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL | |
| session = ort.InferenceSession(str(model_path), options, providers=[provider]) | |
| session.disable_fallback() | |
| return session | |
| def inference(repo_id, model_name, img): | |
| model = hf_hub_download(repo_id=repo_id, filename=model_name) | |
| ort_session = create_model_for_provider(model) | |
| n_channels = ort_session.get_inputs()[0].shape[-1] | |
| img = img[...,:n_channels]/255 | |
| ort_inputs = {ort_session.get_inputs()[0].name: img.astype(np.float32)} | |
| ort_outs = ort_session.run(None, ort_inputs) | |
| return ort_outs[0]*255, ort_outs[2]/0.25 | |
| title="deepflash2" | |
| description='deepflash2 is a deep-learning pipeline for the segmentation of ambiguous microscopic images.\n deepflash2 uses deep model ensembles to achieve more accurate and reliable results. Thus, inference time will be more than a minute in this space.' | |
| examples=[['matjesg/deepflash2_demo', 'cFOS_ensemble.onnx', 'cFOS_example.png'], | |
| ['matjesg/deepflash2_demo', 'YFP_ensemble.onnx', 'YFP_example.png'] | |
| ] | |
| gr.Interface(inference, | |
| [gr.inputs.Textbox(placeholder='e.g., matjesg/cFOS_in_HC', label='repo_id'), | |
| gr.inputs.Textbox(placeholder='e.g., ensemble.onnx', label='model_name'), | |
| gr.inputs.Image(type='numpy', label='Input image') | |
| ], | |
| [gr.outputs.Image(label='Segmentation Mask'), | |
| gr.outputs.Image(label='Uncertainty Map')], | |
| title=title, | |
| description=description, | |
| examples=examples, | |
| ).launch() |