Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	| import gradio as gr | |
| import torch | |
| from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
| # Load the model and tokenizer | |
| model_name = "maulanayyy/codet5_code_translation-v3" # Ganti dengan nama model yang benar | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
| # Check if GPU is available | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| model.to(device) # Pindahkan model ke GPU jika tersedia | |
| # Function to perform inference | |
| def translate_code(input_code): | |
| try: | |
| # Prepare the input text | |
| input_text = f"translate Java to C#: {input_code}" | |
| # Tokenize the input | |
| input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device) # Pastikan input_ids ada di GPU | |
| # Generate the output | |
| with torch.no_grad(): | |
| outputs = model.generate(input_ids, max_length=256) # Kurangi max_length jika perlu | |
| # Decode the output | |
| translated_code = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| return translated_code # Kembalikan hasil akhir | |
| except Exception as e: | |
| print(f"Error during translation: {e}") | |
| return "An error occurred during translation." | |
| # Create Gradio interface | |
| demo = gr.Interface(fn=translate_code, inputs="text", outputs="text", title="Java to C# Code Translator", description="Enter Java code to translate it to C#.") | |
| # Launch the interface | |
| demo.launch(share=True) |