Spaces:
Runtime error
Runtime error
| from langchain.document_loaders import HuggingFaceDatasetLoader | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| from langchain.embeddings import HuggingFaceEmbeddings | |
| from langchain.vectorstores import FAISS | |
| import gradio as gr | |
| # Load the data | |
| loader = HuggingFaceDatasetLoader("databricks/databricks-dolly-15k", "context") | |
| data = loader.load() | |
| # Document Transformers | |
| text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=150) | |
| docs = text_splitter.split_documents(data) | |
| # Text Embedding | |
| embeddings = HuggingFaceEmbeddings( | |
| model_name="sentence-transformers/all-MiniLM-l6-v2", | |
| model_kwargs={'device':'cpu'}, | |
| encode_kwargs={'normalize_embeddings': False} | |
| ) | |
| # Set up Vector Stores | |
| db = FAISS.from_documents(docs, embeddings) | |
| # Set up retrievers | |
| retriever = db.as_retriever() | |
| def generate(input): | |
| docs = retriever.get_relevant_documents(input) | |
| return docs[0].page_content | |
| def respond(message, chat_history): | |
| bot_message = generate(message) | |
| chat_history.append((message, bot_message)) | |
| return "", chat_history | |
| # Set up the chat interface | |
| with gr.Blocks() as demo: | |
| chatbot = gr.Chatbot(height=240) #just to fit the notebook | |
| msg = gr.Textbox(label="Ask away") | |
| btn = gr.Button("Submit") | |
| clear = gr.ClearButton(components=[msg, chatbot], value="Clear console") | |
| btn.click(respond, inputs=[msg, chatbot], outputs=[msg, chatbot]) | |
| msg.submit(respond, inputs=[msg, chatbot], outputs=[msg, chatbot]) #Press enter to submit | |
| demo.queue().launch() |