Spaces:
Sleeping
Sleeping
| import os | |
| import random | |
| from typing import Dict | |
| from pathlib import Path | |
| from langchain_core.tools import tool | |
| from langchain_core.messages import ToolMessage | |
| from langchain_tavily import TavilySearch | |
| from langchain_community.document_loaders import WikipediaLoader | |
| from langchain_community.document_loaders import ArxivLoader | |
| def web_search(query: str) -> ToolMessage: | |
| """Search in the web with Tavily for a query and return maximum 5 results. | |
| Args: | |
| query: The search query. | |
| Returns: | |
| Tavily output, and snippet for the top 5 results | |
| """ | |
| return TavilySearch(max_results=5, include_images=False).invoke({"query": query}) | |
| def wikipedia_search(query: str) -> Dict[str, list]: | |
| """Search Wikipedia for a given query and return the first 5 results. | |
| Args: | |
| query: The search term or topic. | |
| Returns: | |
| A dictionary containing the formatted Wikipedia results. | |
| """ | |
| search_docs = WikipediaLoader(query=query, load_max_docs=5).load() | |
| formatted_search_docs = "\n\n---\n\n".join( | |
| [ | |
| f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' | |
| for doc in search_docs | |
| ] | |
| ) | |
| return {"wiki_results": formatted_search_docs} | |
| #Mathematical tools | |
| def multiply(a: float, b: float) -> float: | |
| """Multiply two numbers. | |
| Args: | |
| a: first number | |
| b: second number | |
| Returns: | |
| Multiplication result | |
| """ | |
| return a * b | |
| def add(a: float, b: float) -> float: | |
| """Add two numbers. | |
| Args: | |
| a: first number | |
| b: second number | |
| Returns: | |
| Addition result | |
| """ | |
| return a + b | |
| def subtract(a: float, b: float) -> float: | |
| """Subtract two numbers. | |
| Args: | |
| a: first number | |
| b: second number | |
| Returns: | |
| Subtraction result | |
| """ | |
| return a - b | |
| def divide(a: float, b: float) -> float: | |
| """Divide two numbers. | |
| Args: | |
| a: first number | |
| b: second number | |
| Returns: | |
| Division result | |
| """ | |
| if b == 0: | |
| raise ValueError("Cannot divide by zero.") | |
| return a / b | |
| def modulus(a: int, b: int) -> int: | |
| """Get the modulus of two numbers. | |
| Args: | |
| a: first number | |
| b: second number | |
| Returns: | |
| Modulus result | |
| """ | |
| return a % b | |
| from langchain_core.tools import tool | |
| def convert_units(value: float, from_unit: str, to_unit: str) -> float: | |
| """ | |
| Converts a value from one unit to another. | |
| Args: | |
| value: The numerical value to convert. | |
| from_unit: The original unit (e.g. 'miles', 'kg', 'celsius'). | |
| to_unit: The target unit (e.g. 'kilometers', 'lb', 'fahrenheit'). | |
| Supported conversions: | |
| - miles <-> kilometers | |
| - kilograms <-> pounds | |
| - celsius <-> fahrenheit | |
| Returns: | |
| The converted value result. | |
| """ | |
| conversions = { | |
| ("miles", "kilometers"): lambda v: v * 1.60934, | |
| ("kilometers", "miles"): lambda v: v / 1.60934, | |
| ("kilograms", "pounds"): lambda v: v * 2.20462, | |
| ("pounds", "kilograms"): lambda v: v / 2.20462, | |
| ("celsius", "fahrenheit"): lambda v: (v * 9/5) + 32, | |
| ("fahrenheit", "celsius"): lambda v: (v - 32) * 5/9, | |
| } | |
| key = (from_unit.lower(), to_unit.lower()) | |
| if key not in conversions: | |
| raise ValueError(f"Conversion from {from_unit} to {to_unit} not supported.") | |
| return conversions[key](value) | |
| def query_table_data(file_path: str, query: str, sheet_name: str = None) -> str: | |
| """ | |
| Loads a table from CSV or Excel and filters it using a pandas query. | |
| Args: | |
| file_path: Path to the table file (.xlsx, .xls). | |
| query: A pandas-compatible query string, e.g., "Age > 30 and Country == 'USA'". | |
| sheet_name: Optional sheet name if the file is Excel. | |
| Returns: | |
| A string representation (markdown) of the filtered table (max 10 rows). | |
| """ | |
| try: | |
| import pandas as pd | |
| path = Path(file_path) | |
| if not path.exists(): | |
| raise FileNotFoundError(f"File not found: {file_path}") | |
| ext = path.suffix.lower() | |
| if ext == ".csv": | |
| df = pd.read_csv(path) | |
| elif ext in [".xlsx", ".xls"]: | |
| df = pd.read_excel(path, sheet_name=sheet_name) | |
| else: | |
| raise ValueError(f"Unsupported file extension: {ext}") | |
| try: | |
| filtered_df = df.query(query) | |
| return filtered_df.head(10).to_markdown(index=False) | |
| except Exception as e: | |
| raise ValueError(f"Invalid query: {query}. Error: {e}") | |
| except ImportError: | |
| return "Error: pandas and openpyxl are not installed. Please install them with 'pip install pandas openpyxl'." | |
| def arvix_search(query: str) -> str: | |
| """Search Arxiv for a query and return maximum 5 result. | |
| Args: | |
| query: The search query. | |
| Returns: | |
| A dictionary containing the formatted Arvix results, and snippet for the top 5 results. | |
| """ | |
| search_docs = ArxivLoader(query=query, load_max_docs=5).load() | |
| formatted_search_docs = "\n\n---\n\n".join( | |
| [ | |
| f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>' | |
| for doc in search_docs | |
| ]) | |
| return {"arvix_results": formatted_search_docs} | |
| level1_tools = [ | |
| multiply, | |
| add, | |
| subtract, | |
| divide, | |
| modulus, | |
| wikipedia_search, | |
| web_search, | |
| arvix_search, | |
| convert_units, | |
| query_table_data | |
| ] |