Spaces:
Sleeping
Sleeping
mchinea
commited on
Commit
·
818fde4
1
Parent(s):
438a309
update
Browse files- requirements.txt +1 -1
- tools_smolagent.py +315 -0
requirements.txt
CHANGED
|
@@ -12,7 +12,7 @@ Pillow
|
|
| 12 |
pydub
|
| 13 |
#tavily-python
|
| 14 |
#wikipedia
|
| 15 |
-
|
| 16 |
#openai-whisper
|
| 17 |
|
| 18 |
wikipedia-api
|
|
|
|
| 12 |
pydub
|
| 13 |
#tavily-python
|
| 14 |
#wikipedia
|
| 15 |
+
pytesseract
|
| 16 |
#openai-whisper
|
| 17 |
|
| 18 |
wikipedia-api
|
tools_smolagent.py
ADDED
|
@@ -0,0 +1,315 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import tempfile
|
| 2 |
+
import requests
|
| 3 |
+
import os
|
| 4 |
+
|
| 5 |
+
from time import sleep
|
| 6 |
+
from urllib.parse import urlparse
|
| 7 |
+
from typing import Optional, List
|
| 8 |
+
import yt_dlp
|
| 9 |
+
from google.genai import types
|
| 10 |
+
|
| 11 |
+
from PIL import Image
|
| 12 |
+
from smolagents import CodeAgent, tool, OpenAIServerModel, LiteLLMModel
|
| 13 |
+
from google import genai
|
| 14 |
+
from dotenv import load_dotenv
|
| 15 |
+
#from model_provider import create_react_model, create_vision_model
|
| 16 |
+
#import imageio
|
| 17 |
+
|
| 18 |
+
load_dotenv(override=True)
|
| 19 |
+
'''
|
| 20 |
+
@tool
|
| 21 |
+
def use_vision_model(question: str, images: List[Image.Image]) -> str:
|
| 22 |
+
"""
|
| 23 |
+
Use a Vision Model to answer a question about a set of images.
|
| 24 |
+
Always use this tool to ask questions about a set of images you have been provided.
|
| 25 |
+
This function uses an image-to-text AI model.
|
| 26 |
+
You can ask a question about a list of one image or a list of multiple images.
|
| 27 |
+
So, if you have multiple images that you want to ask the same question of, pass the entire list of images to the model.
|
| 28 |
+
Ensure your prompt is specific enough to retrieve the exact information you are looking for.
|
| 29 |
+
|
| 30 |
+
Args:
|
| 31 |
+
question: The question to ask about the images. Type: str
|
| 32 |
+
images: The list of images to as the question about. Type: List[PIL.Image.Image]
|
| 33 |
+
"""
|
| 34 |
+
image_model = create_vision_model()
|
| 35 |
+
|
| 36 |
+
content = [
|
| 37 |
+
{
|
| 38 |
+
"type": "text",
|
| 39 |
+
"text": question
|
| 40 |
+
}
|
| 41 |
+
]
|
| 42 |
+
print(f"Asking model a question about {len(images)} images")
|
| 43 |
+
for image in images:
|
| 44 |
+
content.append({
|
| 45 |
+
"type": "image",
|
| 46 |
+
"image": image # ✅ Directly the PIL Image, no wrapping
|
| 47 |
+
})
|
| 48 |
+
|
| 49 |
+
messages = [
|
| 50 |
+
{
|
| 51 |
+
"role": "user",
|
| 52 |
+
"content": content
|
| 53 |
+
}
|
| 54 |
+
]
|
| 55 |
+
|
| 56 |
+
output = image_model(messages).content
|
| 57 |
+
print(f'Model returned: {output}')
|
| 58 |
+
return output
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
@tool
|
| 62 |
+
def youtube_frames_to_images(url: str, sample_interval_frames: int = 24) -> List[Image.Image]:
|
| 63 |
+
"""
|
| 64 |
+
Reviews a YouTube video and returns a List of PIL Images (List[PIL.Image.Image]), which can then be reviewed by a vision model.
|
| 65 |
+
Only use this tool if you have been given a YouTube video that you need to analyze.
|
| 66 |
+
This will generate a list of images, and you can use the use_vision_model tool to analyze those images
|
| 67 |
+
Args:
|
| 68 |
+
url: The Youtube URL
|
| 69 |
+
sample_interval_frames: The sampling interval (default is 24 frames)
|
| 70 |
+
"""
|
| 71 |
+
with tempfile.TemporaryDirectory() as tmpdir:
|
| 72 |
+
# Download the video locally
|
| 73 |
+
ydl_opts = {
|
| 74 |
+
'format': 'bestvideo[height<=1080]+bestaudio/best[height<=1080]/best',
|
| 75 |
+
'outtmpl': os.path.join(tmpdir, 'video.%(ext)s'),
|
| 76 |
+
'quiet': True,
|
| 77 |
+
'noplaylist': True,
|
| 78 |
+
'merge_output_format': 'mp4',
|
| 79 |
+
'force_ipv4': True, # Avoid IPv6 issues
|
| 80 |
+
}
|
| 81 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
| 82 |
+
info = ydl.extract_info(url, download=True)
|
| 83 |
+
|
| 84 |
+
# Find the downloaded file
|
| 85 |
+
video_path = None
|
| 86 |
+
for file in os.listdir(tmpdir):
|
| 87 |
+
if file.endswith('.mp4'):
|
| 88 |
+
video_path = os.path.join(tmpdir, file)
|
| 89 |
+
break
|
| 90 |
+
|
| 91 |
+
if not video_path:
|
| 92 |
+
raise RuntimeError("Failed to download video as mp4")
|
| 93 |
+
|
| 94 |
+
# ✅ Fix: Use `imageio.get_reader()` instead of `imopen()`
|
| 95 |
+
reader = imageio.get_reader(video_path) # Works for frame-by-frame iteration
|
| 96 |
+
# metadata = reader.get_meta_data()
|
| 97 |
+
# fps = metadata.get('fps')
|
| 98 |
+
|
| 99 |
+
# if fps is None:
|
| 100 |
+
# reader.close()
|
| 101 |
+
# raise RuntimeError("Unable to determine FPS from video metadata")
|
| 102 |
+
|
| 103 |
+
# frame_interval = int(fps * sample_interval_frames)
|
| 104 |
+
frame_interval = sample_interval_frames # Use the provided interval directly
|
| 105 |
+
images: List[Image.Image] = []
|
| 106 |
+
|
| 107 |
+
# ✅ Iterate over frames using `get_reader()`
|
| 108 |
+
for idx, frame in enumerate(reader):
|
| 109 |
+
print(f"Processing frame {idx}")
|
| 110 |
+
if idx % frame_interval == 0:
|
| 111 |
+
images.append(Image.fromarray(frame))
|
| 112 |
+
|
| 113 |
+
reader.close()
|
| 114 |
+
return images
|
| 115 |
+
'''
|
| 116 |
+
@tool
|
| 117 |
+
def review_youtube_video(url: str, question: str) -> str:
|
| 118 |
+
"""
|
| 119 |
+
Reviews a YouTube video and answers a specific question about that video.
|
| 120 |
+
Args:
|
| 121 |
+
url (str): the URL to the YouTube video. Should be like this format: https://www.youtube.com/watch?v=9hE5-98ZeCg
|
| 122 |
+
question (str): The question you are asking about the video
|
| 123 |
+
"""
|
| 124 |
+
try:
|
| 125 |
+
client = genai.Client(api_key=os.getenv('GEMINI_KEY'))
|
| 126 |
+
model = 'gemini-2.0-flash-lite'
|
| 127 |
+
response = client.models.generate_content(
|
| 128 |
+
model=model,
|
| 129 |
+
contents=types.Content(
|
| 130 |
+
parts=[
|
| 131 |
+
types.Part(
|
| 132 |
+
file_data=types.FileData(file_uri=url)
|
| 133 |
+
),
|
| 134 |
+
types.Part(text=question)
|
| 135 |
+
]
|
| 136 |
+
)
|
| 137 |
+
)
|
| 138 |
+
return response.text
|
| 139 |
+
except Exception as e:
|
| 140 |
+
return f"Error asking {model} about video: {str(e)}"
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
@tool
|
| 144 |
+
def read_file(filepath: str ) -> str:
|
| 145 |
+
"""
|
| 146 |
+
Used to read the content of a file. Returns the content as a string.
|
| 147 |
+
Will only work for text-based files, such as .txt files or code files.
|
| 148 |
+
Do not use for audio or visual files.
|
| 149 |
+
|
| 150 |
+
Args:
|
| 151 |
+
filepath (str): The path to the file to be read.
|
| 152 |
+
Returns:
|
| 153 |
+
str: Content of the file as a string.
|
| 154 |
+
|
| 155 |
+
Raises:
|
| 156 |
+
IOError: If there is an error opening or reading from the file.
|
| 157 |
+
"""
|
| 158 |
+
try:
|
| 159 |
+
with open(filepath, 'r', encoding='utf-8') as file:
|
| 160 |
+
content = file.read()
|
| 161 |
+
print(content)
|
| 162 |
+
return content
|
| 163 |
+
except FileNotFoundError:
|
| 164 |
+
print(f"File not found: {filepath}")
|
| 165 |
+
except IOError as e:
|
| 166 |
+
print(f"Error reading file: {str(e)}")
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
@tool
|
| 170 |
+
def extract_text_from_image(image_path: str) -> str:
|
| 171 |
+
"""
|
| 172 |
+
Extract text from an image using pytesseract (if available).
|
| 173 |
+
|
| 174 |
+
Args:
|
| 175 |
+
image_path: Path to the image file
|
| 176 |
+
|
| 177 |
+
Returns:
|
| 178 |
+
Extracted text or error message
|
| 179 |
+
"""
|
| 180 |
+
try:
|
| 181 |
+
# Try to import pytesseract
|
| 182 |
+
import pytesseract
|
| 183 |
+
from PIL import Image
|
| 184 |
+
|
| 185 |
+
# Open the image
|
| 186 |
+
image = Image.open(image_path)
|
| 187 |
+
|
| 188 |
+
# Extract text
|
| 189 |
+
text = pytesseract.image_to_string(image)
|
| 190 |
+
|
| 191 |
+
return f"Extracted text from image:\n\n{text}"
|
| 192 |
+
except ImportError:
|
| 193 |
+
return "Error: pytesseract is not installed. Please install it with 'pip install pytesseract' and ensure Tesseract OCR is installed on your system."
|
| 194 |
+
except Exception as e:
|
| 195 |
+
return f"Error extracting text from image: {str(e)}"
|
| 196 |
+
|
| 197 |
+
@tool
|
| 198 |
+
def analyze_csv_file(file_path: str, query: str) -> str:
|
| 199 |
+
"""
|
| 200 |
+
Analyze a CSV file using pandas and answer a question about it.
|
| 201 |
+
To use this file you need to have saved it in a location and pass that location to the function.
|
| 202 |
+
The download_file_from_url tool will save it by name to tempfile.gettempdir()
|
| 203 |
+
|
| 204 |
+
Args:
|
| 205 |
+
file_path: Path to the CSV file
|
| 206 |
+
query: Question about the data
|
| 207 |
+
|
| 208 |
+
Returns:
|
| 209 |
+
Analysis result or error message
|
| 210 |
+
"""
|
| 211 |
+
try:
|
| 212 |
+
import pandas as pd
|
| 213 |
+
|
| 214 |
+
# Read the CSV file
|
| 215 |
+
df = pd.read_csv(file_path)
|
| 216 |
+
|
| 217 |
+
# Run various analyses based on the query
|
| 218 |
+
result = f"CSV file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
|
| 219 |
+
result += f"Columns: {', '.join(df.columns)}\n\n"
|
| 220 |
+
|
| 221 |
+
# Add summary statistics
|
| 222 |
+
result += "Summary statistics:\n"
|
| 223 |
+
result += str(df.describe())
|
| 224 |
+
|
| 225 |
+
return result
|
| 226 |
+
except ImportError:
|
| 227 |
+
return "Error: pandas is not installed. Please install it with 'pip install pandas'."
|
| 228 |
+
except Exception as e:
|
| 229 |
+
return f"Error analyzing CSV file: {str(e)}"
|
| 230 |
+
|
| 231 |
+
@tool
|
| 232 |
+
def analyze_excel_file(file_path: str, query: str) -> str:
|
| 233 |
+
"""
|
| 234 |
+
Analyze an Excel file using pandas and answer a question about it.
|
| 235 |
+
To use this file you need to have saved it in a location and pass that location to the function.
|
| 236 |
+
The download_file_from_url tool will save it by name to tempfile.gettempdir()
|
| 237 |
+
|
| 238 |
+
Args:
|
| 239 |
+
file_path: Path to the Excel file
|
| 240 |
+
query: Question about the data
|
| 241 |
+
|
| 242 |
+
Returns:
|
| 243 |
+
Analysis result or error message
|
| 244 |
+
"""
|
| 245 |
+
try:
|
| 246 |
+
import pandas as pd
|
| 247 |
+
|
| 248 |
+
# Read the Excel file
|
| 249 |
+
df = pd.read_excel(file_path)
|
| 250 |
+
|
| 251 |
+
# Run various analyses based on the query
|
| 252 |
+
result = f"Excel file loaded with {len(df)} rows and {len(df.columns)} columns.\n"
|
| 253 |
+
result += f"Columns: {', '.join(df.columns)}\n\n"
|
| 254 |
+
|
| 255 |
+
# Add summary statistics
|
| 256 |
+
result += "Summary statistics:\n"
|
| 257 |
+
result += str(df.describe())
|
| 258 |
+
|
| 259 |
+
return result
|
| 260 |
+
except ImportError:
|
| 261 |
+
return "Error: pandas and openpyxl are not installed. Please install them with 'pip install pandas openpyxl'."
|
| 262 |
+
except Exception as e:
|
| 263 |
+
return f"Error analyzing Excel file: {str(e)}"
|
| 264 |
+
|
| 265 |
+
import whisper
|
| 266 |
+
|
| 267 |
+
@tool
|
| 268 |
+
def youtube_transcribe(url: str) -> str:
|
| 269 |
+
"""
|
| 270 |
+
Transcribes a YouTube video. Use when you need to process the audio from a YouTube video into Text.
|
| 271 |
+
Args:
|
| 272 |
+
url: Url of the YouTube video
|
| 273 |
+
"""
|
| 274 |
+
model_size: str = "base"
|
| 275 |
+
# Load model
|
| 276 |
+
model = whisper.load_model(model_size)
|
| 277 |
+
with tempfile.TemporaryDirectory() as tmpdir:
|
| 278 |
+
# Download audio
|
| 279 |
+
ydl_opts = {
|
| 280 |
+
'format': 'bestaudio/best',
|
| 281 |
+
'outtmpl': os.path.join(tmpdir, 'audio.%(ext)s'),
|
| 282 |
+
'quiet': True,
|
| 283 |
+
'noplaylist': True,
|
| 284 |
+
'postprocessors': [{
|
| 285 |
+
'key': 'FFmpegExtractAudio',
|
| 286 |
+
'preferredcodec': 'wav',
|
| 287 |
+
'preferredquality': '192',
|
| 288 |
+
}],
|
| 289 |
+
'force_ipv4': True,
|
| 290 |
+
}
|
| 291 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
| 292 |
+
info = ydl.extract_info(url, download=True)
|
| 293 |
+
|
| 294 |
+
audio_path = next((os.path.join(tmpdir, f) for f in os.listdir(tmpdir) if f.endswith('.wav')), None)
|
| 295 |
+
if not audio_path:
|
| 296 |
+
raise RuntimeError("Failed to find audio")
|
| 297 |
+
|
| 298 |
+
# Transcribe
|
| 299 |
+
result = model.transcribe(audio_path)
|
| 300 |
+
return result['text']
|
| 301 |
+
|
| 302 |
+
@tool
|
| 303 |
+
def transcribe_audio(audio_file_path: str) -> str:
|
| 304 |
+
"""
|
| 305 |
+
Transcribes an audio file. Use when you need to process audio data.
|
| 306 |
+
DO NOT use this tool for YouTube video; use the youtube_transcribe tool to process audio data from YouTube.
|
| 307 |
+
Use this tool when you have an audio file in .mp3, .wav, .aac, .ogg, .flac, .m4a, .alac or .wma
|
| 308 |
+
Args:
|
| 309 |
+
audio_file_path: Filepath to the audio file (str)
|
| 310 |
+
"""
|
| 311 |
+
model_size: str = "small"
|
| 312 |
+
# Load model
|
| 313 |
+
model = whisper.load_model(model_size)
|
| 314 |
+
result = model.transcribe(audio_file_path)
|
| 315 |
+
return result['text']
|