Working generic expand
Browse files- completions.py +44 -7
- expand.py +84 -0
- expand_test.py +161 -0
completions.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
#%%
|
| 2 |
from dataclasses import dataclass
|
|
|
|
| 3 |
import time
|
| 4 |
import torch
|
| 5 |
from transformers import AutoTokenizer, AutoModelForCausalLM, PreTrainedModel, PreTrainedTokenizer, PreTrainedTokenizerFast, BatchEncoding
|
|
@@ -34,7 +35,7 @@ def split_into_words(token_probs: list[tuple[int, float]], tokenizer: Tokenizer)
|
|
| 34 |
|
| 35 |
def merge_tokens(a: Tok, b: Tok) -> Tok | None:
|
| 36 |
if is_beginning_of_word(a.str) and is_continuation_of_word(b.str):
|
| 37 |
-
return Tok(
|
| 38 |
return None
|
| 39 |
|
| 40 |
converted = [Tok(i, [token_id], tokenizer.decode([token_id]), logprob)
|
|
@@ -94,6 +95,20 @@ def generate_outputs(model: PreTrainedModel, inputs: BatchEncoding, num_samples:
|
|
| 94 |
)
|
| 95 |
return outputs
|
| 96 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 97 |
def extract_replacements(outputs: GenerateOutput | torch.LongTensor, tokenizer: Tokenizer, num_inputs: int, input_len: int, num_samples: int = 5) -> list[list[str]]:
|
| 98 |
all_new_words = []
|
| 99 |
for i in range(num_inputs):
|
|
@@ -117,30 +132,24 @@ def load_model() -> tuple[PreTrainedModel, Tokenizer, torch.device]:
|
|
| 117 |
return model, tokenizer, device
|
| 118 |
|
| 119 |
def check_text(input_text: str, model: PreTrainedModel, tokenizer: Tokenizer, device: torch.device) -> list[ApiWord]:
|
| 120 |
-
#%%
|
| 121 |
inputs: BatchEncoding = tokenize(input_text, tokenizer, device)
|
| 122 |
|
| 123 |
-
#%%
|
| 124 |
token_probs: list[tuple[int, float]] = calculate_log_probabilities(model, tokenizer, inputs)
|
| 125 |
|
| 126 |
-
#%%
|
| 127 |
words = split_into_words(token_probs, tokenizer)
|
| 128 |
log_prob_threshold = -5.0
|
| 129 |
low_prob_words = [(i, word) for i, word in enumerate(words) if word.logprob < log_prob_threshold]
|
| 130 |
|
| 131 |
-
#%%
|
| 132 |
contexts = [word.context for _, word in low_prob_words]
|
| 133 |
inputs = prepare_inputs(contexts, tokenizer, device)
|
| 134 |
input_ids = inputs["input_ids"]
|
| 135 |
|
| 136 |
-
#%%
|
| 137 |
num_samples = 10
|
| 138 |
start_time = time.time()
|
| 139 |
outputs = generate_outputs(model, inputs, num_samples)
|
| 140 |
end_time = time.time()
|
| 141 |
print(f"Total time taken for replacements: {end_time - start_time:.4f} seconds")
|
| 142 |
|
| 143 |
-
#%%
|
| 144 |
replacements = extract_replacements(outputs, tokenizer, input_ids.shape[0], input_ids.shape[1], num_samples)
|
| 145 |
|
| 146 |
low_prob_words_with_replacements = { i: (w, r) for (i, w), r in zip(low_prob_words, replacements) }
|
|
@@ -152,3 +161,31 @@ def check_text(input_text: str, model: PreTrainedModel, tokenizer: Tokenizer, de
|
|
| 152 |
else:
|
| 153 |
result.append(ApiWord(text=word.text, logprob=word.logprob, replacements=[]))
|
| 154 |
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
#%%
|
| 2 |
from dataclasses import dataclass
|
| 3 |
+
import math
|
| 4 |
import time
|
| 5 |
import torch
|
| 6 |
from transformers import AutoTokenizer, AutoModelForCausalLM, PreTrainedModel, PreTrainedTokenizer, PreTrainedTokenizerFast, BatchEncoding
|
|
|
|
| 35 |
|
| 36 |
def merge_tokens(a: Tok, b: Tok) -> Tok | None:
|
| 37 |
if is_beginning_of_word(a.str) and is_continuation_of_word(b.str):
|
| 38 |
+
return Tok(a.index, a.ids + b.ids, a.str + b.str, a.logprob + b.logprob)
|
| 39 |
return None
|
| 40 |
|
| 41 |
converted = [Tok(i, [token_id], tokenizer.decode([token_id]), logprob)
|
|
|
|
| 95 |
)
|
| 96 |
return outputs
|
| 97 |
|
| 98 |
+
def find_next_tokens(model: PreTrainedModel, inputs: BatchEncoding, tokenizer: Tokenizer, min_p: float) -> list[list[tuple[int, str, float]]]:
|
| 99 |
+
input_ids = inputs["input_ids"]
|
| 100 |
+
attention_mask = inputs["attention_mask"]
|
| 101 |
+
with torch.no_grad():
|
| 102 |
+
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
|
| 103 |
+
logits: torch.Tensor = outputs.logits[:, -1, :]
|
| 104 |
+
log_probs: torch.Tensor = torch.log_softmax(logits, dim=-1)
|
| 105 |
+
# for every batch item, find all tokens with log prob greater than min_p, and return their ids and log probs
|
| 106 |
+
result = []
|
| 107 |
+
print(f"{log_probs.shape=}")
|
| 108 |
+
for probs in log_probs:
|
| 109 |
+
result.append([(i, tokenizer.convert_ids_to_tokens([i])[0], p) for i, p in enumerate(probs) if p > min_p])
|
| 110 |
+
return result
|
| 111 |
+
|
| 112 |
def extract_replacements(outputs: GenerateOutput | torch.LongTensor, tokenizer: Tokenizer, num_inputs: int, input_len: int, num_samples: int = 5) -> list[list[str]]:
|
| 113 |
all_new_words = []
|
| 114 |
for i in range(num_inputs):
|
|
|
|
| 132 |
return model, tokenizer, device
|
| 133 |
|
| 134 |
def check_text(input_text: str, model: PreTrainedModel, tokenizer: Tokenizer, device: torch.device) -> list[ApiWord]:
|
|
|
|
| 135 |
inputs: BatchEncoding = tokenize(input_text, tokenizer, device)
|
| 136 |
|
|
|
|
| 137 |
token_probs: list[tuple[int, float]] = calculate_log_probabilities(model, tokenizer, inputs)
|
| 138 |
|
|
|
|
| 139 |
words = split_into_words(token_probs, tokenizer)
|
| 140 |
log_prob_threshold = -5.0
|
| 141 |
low_prob_words = [(i, word) for i, word in enumerate(words) if word.logprob < log_prob_threshold]
|
| 142 |
|
|
|
|
| 143 |
contexts = [word.context for _, word in low_prob_words]
|
| 144 |
inputs = prepare_inputs(contexts, tokenizer, device)
|
| 145 |
input_ids = inputs["input_ids"]
|
| 146 |
|
|
|
|
| 147 |
num_samples = 10
|
| 148 |
start_time = time.time()
|
| 149 |
outputs = generate_outputs(model, inputs, num_samples)
|
| 150 |
end_time = time.time()
|
| 151 |
print(f"Total time taken for replacements: {end_time - start_time:.4f} seconds")
|
| 152 |
|
|
|
|
| 153 |
replacements = extract_replacements(outputs, tokenizer, input_ids.shape[0], input_ids.shape[1], num_samples)
|
| 154 |
|
| 155 |
low_prob_words_with_replacements = { i: (w, r) for (i, w), r in zip(low_prob_words, replacements) }
|
|
|
|
| 161 |
else:
|
| 162 |
result.append(ApiWord(text=word.text, logprob=word.logprob, replacements=[]))
|
| 163 |
return result
|
| 164 |
+
|
| 165 |
+
# %%
|
| 166 |
+
model, tokenizer, device = load_model()
|
| 167 |
+
|
| 168 |
+
#%%
|
| 169 |
+
input_text = "The quick brown fox jumpz over"
|
| 170 |
+
inputs: BatchEncoding = tokenize(input_text, tokenizer, device)
|
| 171 |
+
|
| 172 |
+
#%%
|
| 173 |
+
token_probs: list[tuple[int, float]] = calculate_log_probabilities(model, tokenizer, inputs)
|
| 174 |
+
|
| 175 |
+
#%%
|
| 176 |
+
words = split_into_words(token_probs, tokenizer)
|
| 177 |
+
log_prob_threshold = -5.0
|
| 178 |
+
low_prob_words = [(i, word) for i, word in enumerate(words) if word.logprob < log_prob_threshold]
|
| 179 |
+
|
| 180 |
+
#%%
|
| 181 |
+
contexts = [word.context for _, word in low_prob_words]
|
| 182 |
+
inputs = prepare_inputs(contexts, tokenizer, device)
|
| 183 |
+
input_ids = inputs["input_ids"]
|
| 184 |
+
|
| 185 |
+
#%%
|
| 186 |
+
next_tokens = find_next_tokens(model, inputs, tokenizer, min_p=-5)
|
| 187 |
+
|
| 188 |
+
#%%
|
| 189 |
+
next_tokens
|
| 190 |
+
|
| 191 |
+
# %%
|
expand.py
ADDED
|
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from collections import defaultdict
|
| 2 |
+
from dataclasses import dataclass
|
| 3 |
+
from typing import Protocol
|
| 4 |
+
|
| 5 |
+
# import torch
|
| 6 |
+
# from transformers import PreTrainedModel
|
| 7 |
+
# from completions import find_next_tokens, Tokenizer
|
| 8 |
+
|
| 9 |
+
@dataclass
|
| 10 |
+
class Series:
|
| 11 |
+
id: int
|
| 12 |
+
tokens: list[int]
|
| 13 |
+
budget: float
|
| 14 |
+
|
| 15 |
+
@dataclass
|
| 16 |
+
class Batch:
|
| 17 |
+
items: list[Series]
|
| 18 |
+
|
| 19 |
+
@dataclass
|
| 20 |
+
class ExpansionOne:
|
| 21 |
+
token: int
|
| 22 |
+
cost: float
|
| 23 |
+
|
| 24 |
+
@dataclass
|
| 25 |
+
class ExpansionOneResult:
|
| 26 |
+
series: Series
|
| 27 |
+
expansions: list[ExpansionOne]
|
| 28 |
+
|
| 29 |
+
@dataclass
|
| 30 |
+
class ExpansionOneResultBatch:
|
| 31 |
+
items: list[ExpansionOneResult]
|
| 32 |
+
|
| 33 |
+
# A fundamental operation that we can implement both using an LLM and using a list of hardcoded sequences, for testing
|
| 34 |
+
class ExpanderOneBatch(Protocol):
|
| 35 |
+
def expand(self, batch: Batch) -> ExpansionOneResultBatch: ...
|
| 36 |
+
|
| 37 |
+
@dataclass
|
| 38 |
+
class ExpansionResult:
|
| 39 |
+
series: Series
|
| 40 |
+
expansions: list[list[int]]
|
| 41 |
+
|
| 42 |
+
@dataclass
|
| 43 |
+
class ExpansionResultBatch:
|
| 44 |
+
items: list[ExpansionResult]
|
| 45 |
+
|
| 46 |
+
def compute_new_series(result: ExpansionOneResult) -> list[Series]:
|
| 47 |
+
results = []
|
| 48 |
+
for expansion in result.expansions:
|
| 49 |
+
results.append(Series(id=result.series.id, tokens=result.series.tokens + [expansion.token], budget=result.series.budget - expansion.cost))
|
| 50 |
+
return results
|
| 51 |
+
|
| 52 |
+
def compute_expansions(original_series: list[Series], expanded_series: list[Series]) -> ExpansionResultBatch:
|
| 53 |
+
# check that ids in original_series are unique
|
| 54 |
+
assert len(original_series) == len({s.id for s in original_series})
|
| 55 |
+
# group original series by id
|
| 56 |
+
original_series_by_id = {s.id: s for s in original_series}
|
| 57 |
+
# group expanded series by id
|
| 58 |
+
expanded_series_by_id: dict[int, list[list[int]]] = defaultdict(list)
|
| 59 |
+
for s in expanded_series:
|
| 60 |
+
expanded_series_by_id[s.id].append(s.tokens)
|
| 61 |
+
results = []
|
| 62 |
+
for id, s in original_series_by_id.items():
|
| 63 |
+
expansions = expanded_series_by_id[id]
|
| 64 |
+
# subtract the original series from each expansion
|
| 65 |
+
l = len(s.tokens)
|
| 66 |
+
trimmed_expansions = [e[l:] for e in expansions if len(e) > l]
|
| 67 |
+
expansion_result = ExpansionResult(series=s, expansions=trimmed_expansions)
|
| 68 |
+
results.append(expansion_result)
|
| 69 |
+
return ExpansionResultBatch(items=results)
|
| 70 |
+
|
| 71 |
+
# A compound operation that we can implement generically, relying on an ExpanderOneBatch
|
| 72 |
+
def expand(batch: Batch, expander: ExpanderOneBatch) -> ExpansionResultBatch:
|
| 73 |
+
completed_series: list[Series] = []
|
| 74 |
+
current_batch = batch
|
| 75 |
+
while len(current_batch.items) > 0:
|
| 76 |
+
current_batch_items = []
|
| 77 |
+
expanded = expander.expand(current_batch)
|
| 78 |
+
for item in expanded.items:
|
| 79 |
+
if len(item.expansions) == 0:
|
| 80 |
+
completed_series.append(item.series)
|
| 81 |
+
else:
|
| 82 |
+
current_batch_items.extend(compute_new_series(item))
|
| 83 |
+
current_batch = Batch(items=current_batch_items)
|
| 84 |
+
return compute_expansions(batch.items, completed_series)
|
expand_test.py
ADDED
|
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from dataclasses import dataclass
|
| 2 |
+
from expand import Series, ExpanderOneBatch, ExpansionOne, Batch, ExpansionOneResult, ExpansionOneResultBatch, ExpansionResult, ExpansionResultBatch, expand
|
| 3 |
+
|
| 4 |
+
possible_sequences = [
|
| 5 |
+
[1, 21, 31, 41],
|
| 6 |
+
[1, 21, 31, 42],
|
| 7 |
+
[1, 21, 32, 41, 51],
|
| 8 |
+
[1, 22, 33, 41],
|
| 9 |
+
[1, 22, 34, 41],
|
| 10 |
+
]
|
| 11 |
+
|
| 12 |
+
def expand_series(series: Series) -> list[ExpansionOne]:
|
| 13 |
+
l = len(series.tokens)
|
| 14 |
+
items = [s[l] for s in possible_sequences if s[:l] == series.tokens and len(s) > l]
|
| 15 |
+
candidates = [ExpansionOne(token=l, cost=1.0) for l in dict.fromkeys(items)]
|
| 16 |
+
return [c for c in candidates if c.cost <= series.budget]
|
| 17 |
+
|
| 18 |
+
class HardcodedExpanderOneBatch(ExpanderOneBatch):
|
| 19 |
+
def expand(self, batch: Batch) -> ExpansionOneResultBatch:
|
| 20 |
+
result = []
|
| 21 |
+
for s in batch.items:
|
| 22 |
+
expansions = expand_series(s)
|
| 23 |
+
result.append(ExpansionOneResult(series=s, expansions=expansions))
|
| 24 |
+
return ExpansionOneResultBatch(items=result)
|
| 25 |
+
|
| 26 |
+
expander = HardcodedExpanderOneBatch()
|
| 27 |
+
|
| 28 |
+
def test_expander_zero_budget():
|
| 29 |
+
s = Series(id=0, tokens=[1], budget=0.0)
|
| 30 |
+
expanded = expander.expand(Batch(items=[s]))
|
| 31 |
+
expected = ExpansionOneResultBatch(
|
| 32 |
+
items=[ExpansionOneResult(series=s, expansions=[])]
|
| 33 |
+
)
|
| 34 |
+
assert expected == expanded
|
| 35 |
+
|
| 36 |
+
def test_expander_budget_one():
|
| 37 |
+
s = Series(id=0, tokens=[1], budget=1.0)
|
| 38 |
+
expanded = expander.expand(Batch(items=[s]))
|
| 39 |
+
expected = ExpansionOneResultBatch(
|
| 40 |
+
items=[ExpansionOneResult(series=s, expansions=[
|
| 41 |
+
ExpansionOne(token=21, cost=1.0),
|
| 42 |
+
ExpansionOne(token=22, cost=1.0),
|
| 43 |
+
])]
|
| 44 |
+
)
|
| 45 |
+
assert expected == expanded
|
| 46 |
+
|
| 47 |
+
def test_expander_budget_two():
|
| 48 |
+
s = Series(id=0, tokens=[1], budget=2.0)
|
| 49 |
+
expanded = expander.expand(Batch(items=[s]))
|
| 50 |
+
expected = ExpansionOneResultBatch(
|
| 51 |
+
items=[ExpansionOneResult(series=s, expansions=[
|
| 52 |
+
ExpansionOne(token=21, cost=1.0),
|
| 53 |
+
ExpansionOne(token=22, cost=1.0),
|
| 54 |
+
])]
|
| 55 |
+
)
|
| 56 |
+
assert expected == expanded
|
| 57 |
+
|
| 58 |
+
def test_expander_budget_one_no_expansion():
|
| 59 |
+
s = Series(id=0, tokens=[1, 20], budget=1.0)
|
| 60 |
+
expanded = expander.expand(Batch(items=[s]))
|
| 61 |
+
expected = ExpansionOneResultBatch(
|
| 62 |
+
items=[ExpansionOneResult(series=s, expansions=[])]
|
| 63 |
+
)
|
| 64 |
+
assert expected == expanded
|
| 65 |
+
|
| 66 |
+
def test_expander_budget_one_two_tokens():
|
| 67 |
+
s = Series(id=0, tokens=[1, 22], budget=1.0)
|
| 68 |
+
expanded = expander.expand(Batch(items=[s]))
|
| 69 |
+
expected = ExpansionOneResultBatch(
|
| 70 |
+
items=[ExpansionOneResult(series=s, expansions=[
|
| 71 |
+
ExpansionOne(token=33, cost=1.0),
|
| 72 |
+
ExpansionOne(token=34, cost=1.0),
|
| 73 |
+
])]
|
| 74 |
+
)
|
| 75 |
+
assert expected == expanded
|
| 76 |
+
|
| 77 |
+
def test_expander_budget_one_two_tokens_two_series():
|
| 78 |
+
s1 = Series(id=0, tokens=[1, 21, 31], budget=1.0)
|
| 79 |
+
s2 = Series(id=1, tokens=[1, 22], budget=1.0)
|
| 80 |
+
expanded = expander.expand(Batch(items=[s1, s2]))
|
| 81 |
+
expected = ExpansionOneResultBatch(
|
| 82 |
+
items=[
|
| 83 |
+
ExpansionOneResult(series=s1, expansions=[
|
| 84 |
+
ExpansionOne(token=41, cost=1.0),
|
| 85 |
+
ExpansionOne(token=42, cost=1.0),
|
| 86 |
+
]),
|
| 87 |
+
ExpansionOneResult(series=s2, expansions=[
|
| 88 |
+
ExpansionOne(token=33, cost=1.0),
|
| 89 |
+
ExpansionOne(token=34, cost=1.0),
|
| 90 |
+
])
|
| 91 |
+
]
|
| 92 |
+
)
|
| 93 |
+
assert expected == expanded
|
| 94 |
+
|
| 95 |
+
def test_expand_01():
|
| 96 |
+
batch = Batch(items=[
|
| 97 |
+
Series(id=0, tokens=[1, 21], budget=1.0),
|
| 98 |
+
Series(id=1, tokens=[1, 22], budget=1.0),
|
| 99 |
+
])
|
| 100 |
+
expanded = expand(batch, expander)
|
| 101 |
+
assert expanded == ExpansionResultBatch(items=[
|
| 102 |
+
ExpansionResult(
|
| 103 |
+
series=Series(id=0, tokens=[1, 21], budget=1.0),
|
| 104 |
+
expansions=[
|
| 105 |
+
[31],
|
| 106 |
+
[32],
|
| 107 |
+
]
|
| 108 |
+
),
|
| 109 |
+
ExpansionResult(
|
| 110 |
+
series=Series(id=1, tokens=[1, 22], budget=1.0),
|
| 111 |
+
expansions=[
|
| 112 |
+
[33],
|
| 113 |
+
[34],
|
| 114 |
+
]
|
| 115 |
+
),
|
| 116 |
+
])
|
| 117 |
+
|
| 118 |
+
def test_expand_02():
|
| 119 |
+
batch = Batch(items=[
|
| 120 |
+
Series(id=0, tokens=[1, 21], budget=2.0),
|
| 121 |
+
Series(id=1, tokens=[1, 22], budget=1.0),
|
| 122 |
+
])
|
| 123 |
+
expanded = expand(batch, expander)
|
| 124 |
+
assert expanded == ExpansionResultBatch(items=[
|
| 125 |
+
ExpansionResult(
|
| 126 |
+
series=Series(id=0, tokens=[1, 21], budget=2.0),
|
| 127 |
+
expansions=[
|
| 128 |
+
[31, 41],
|
| 129 |
+
[31, 42],
|
| 130 |
+
[32, 41],
|
| 131 |
+
]
|
| 132 |
+
),
|
| 133 |
+
ExpansionResult(
|
| 134 |
+
series=Series(id=1, tokens=[1, 22], budget=1.0),
|
| 135 |
+
expansions=[
|
| 136 |
+
[33],
|
| 137 |
+
[34],
|
| 138 |
+
]
|
| 139 |
+
),
|
| 140 |
+
])
|
| 141 |
+
|
| 142 |
+
def test_expand_03():
|
| 143 |
+
batch = Batch(items=[
|
| 144 |
+
Series(id=0, tokens=[1, 21], budget=3.0),
|
| 145 |
+
Series(id=1, tokens=[1, 22], budget=0.0),
|
| 146 |
+
])
|
| 147 |
+
expanded = expand(batch, expander)
|
| 148 |
+
assert expanded == ExpansionResultBatch(items=[
|
| 149 |
+
ExpansionResult(
|
| 150 |
+
series=Series(id=0, tokens=[1, 21], budget=3.0),
|
| 151 |
+
expansions=[
|
| 152 |
+
[31, 41],
|
| 153 |
+
[31, 42],
|
| 154 |
+
[32, 41, 51],
|
| 155 |
+
]
|
| 156 |
+
),
|
| 157 |
+
ExpansionResult(
|
| 158 |
+
series=Series(id=1, tokens=[1, 22], budget=0.0),
|
| 159 |
+
expansions=[],
|
| 160 |
+
),
|
| 161 |
+
])
|