import gradio as gr from transformers import AutoModel, AutoTokenizer # Load the BAGEL model and tokenizer tokenizer = AutoTokenizer.from_pretrained("ByteDance-Seed/BAGEL-7B-MoT") model = AutoModel.from_pretrained("ByteDance-Seed/BAGEL-7B-MoT") # Define a function to generate outputs def generate(prompt): inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs) return tokenizer.decode(outputs[0], skip_special_tokens=True) # Create a Gradio interface demo = gr.Interface( fn=generate, # The function to run inputs="text", # Input type (text box) outputs="text" # Output type (text box) ) # Launch the app demo.launch()