Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from transformers import AutoProcessor, AutoModel
|
| 4 |
+
from utils import (
|
| 5 |
+
convert_frames_to_gif,
|
| 6 |
+
download_youtube_video,
|
| 7 |
+
get_num_total_frames,
|
| 8 |
+
sample_frames_from_video_file,
|
| 9 |
+
)
|
| 10 |
+
|
| 11 |
+
FRAME_SAMPLING_RATE = 4
|
| 12 |
+
DEFAULT_MODEL = "microsoft/xclip-base-patch16-zero-shot"
|
| 13 |
+
|
| 14 |
+
VALID_ZEROSHOT_VIDEOCLASSIFICATION_MODELS = [
|
| 15 |
+
"microsoft/xclip-base-patch32",
|
| 16 |
+
"microsoft/xclip-base-patch16-zero-shot",
|
| 17 |
+
"microsoft/xclip-base-patch16-kinetics-600",
|
| 18 |
+
"microsoft/xclip-large-patch14ft/xclip-base-patch32-16-frames",
|
| 19 |
+
"microsoft/xclip-large-patch14",
|
| 20 |
+
"microsoft/xclip-base-patch16-hmdb-4-shot",
|
| 21 |
+
"microsoft/xclip-base-patch16-16-frames",
|
| 22 |
+
"microsoft/xclip-base-patch16-hmdb-2-shot",
|
| 23 |
+
"microsoft/xclip-base-patch16-ucf-2-shot",
|
| 24 |
+
"microsoft/xclip-base-patch16-ucf-8-shot",
|
| 25 |
+
"microsoft/xclip-base-patch16",
|
| 26 |
+
"microsoft/xclip-base-patch16-hmdb-8-shot",
|
| 27 |
+
"microsoft/xclip-base-patch16-hmdb-16-shot",
|
| 28 |
+
"microsoft/xclip-base-patch16-ucf-16-shot",
|
| 29 |
+
]
|
| 30 |
+
|
| 31 |
+
processor = AutoProcessor.from_pretrained(DEFAULT_MODEL)
|
| 32 |
+
model = AutoModel.from_pretrained(DEFAULT_MODEL)
|
| 33 |
+
|
| 34 |
+
examples = [
|
| 35 |
+
[
|
| 36 |
+
"https://www.youtu.be/l1dBM8ZECao",
|
| 37 |
+
"sleeping dog,cat fight club,birds of prey",
|
| 38 |
+
],
|
| 39 |
+
[
|
| 40 |
+
"https://youtu.be/VMj-3S1tku0",
|
| 41 |
+
"programming course,eating spaghetti,playing football",
|
| 42 |
+
],
|
| 43 |
+
[
|
| 44 |
+
"https://youtu.be/BRw7rvLdGzU",
|
| 45 |
+
"game of thrones,the lord of the rings,vikings",
|
| 46 |
+
],
|
| 47 |
+
]
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def select_model(model_name):
|
| 51 |
+
global processor, model
|
| 52 |
+
processor = AutoProcessor.from_pretrained(model_name)
|
| 53 |
+
model = AutoModel.from_pretrained(model_name)
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def predict(youtube_url_or_file_path, labels_text):
|
| 57 |
+
|
| 58 |
+
if youtube_url_or_file_path.startswith("http"):
|
| 59 |
+
video_path = download_youtube_video(youtube_url_or_file_path)
|
| 60 |
+
else:
|
| 61 |
+
video_path = youtube_url_or_file_path
|
| 62 |
+
|
| 63 |
+
# rearrange sampling rate based on video length and model input length
|
| 64 |
+
num_total_frames = get_num_total_frames(video_path)
|
| 65 |
+
num_model_input_frames = model.config.vision_config.num_frames
|
| 66 |
+
if num_total_frames < FRAME_SAMPLING_RATE * num_model_input_frames:
|
| 67 |
+
frame_sampling_rate = num_total_frames // num_model_input_frames
|
| 68 |
+
else:
|
| 69 |
+
frame_sampling_rate = FRAME_SAMPLING_RATE
|
| 70 |
+
|
| 71 |
+
labels = labels_text.split(",")
|
| 72 |
+
|
| 73 |
+
frames = sample_frames_from_video_file(
|
| 74 |
+
video_path, num_model_input_frames, frame_sampling_rate
|
| 75 |
+
)
|
| 76 |
+
gif_path = convert_frames_to_gif(frames, save_path="video.gif")
|
| 77 |
+
|
| 78 |
+
inputs = processor(
|
| 79 |
+
text=labels, videos=list(frames), return_tensors="pt", padding=True
|
| 80 |
+
)
|
| 81 |
+
# forward pass
|
| 82 |
+
with torch.no_grad():
|
| 83 |
+
outputs = model(**inputs)
|
| 84 |
+
|
| 85 |
+
probs = outputs.logits_per_video[0].softmax(dim=-1).cpu().numpy()
|
| 86 |
+
label_to_prob = {}
|
| 87 |
+
for ind, label in enumerate(labels):
|
| 88 |
+
label_to_prob[label] = float(probs[ind])
|
| 89 |
+
|
| 90 |
+
return label_to_prob, gif_path
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
app = gr.Blocks()
|
| 94 |
+
with app:
|
| 95 |
+
gr.Markdown(
|
| 96 |
+
"# **<p align='center'>Zero-shot Video Classification with 🤗 Transformers</p>**"
|
| 97 |
+
)
|
| 98 |
+
gr.Markdown(
|
| 99 |
+
"""
|
| 100 |
+
<p style='text-align: center'>
|
| 101 |
+
Follow me for more!
|
| 102 |
+
<br> <a href='https://twitter.com/fcakyon' target='_blank'>twitter</a> | <a href='https://github.com/fcakyon' target='_blank'>github</a> | <a href='https://www.linkedin.com/in/fcakyon/' target='_blank'>linkedin</a> | <a href='https://fcakyon.medium.com/' target='_blank'>medium</a>
|
| 103 |
+
</p>
|
| 104 |
+
"""
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
with gr.Row():
|
| 108 |
+
with gr.Column():
|
| 109 |
+
model_names_dropdown = gr.Dropdown(
|
| 110 |
+
choices=VALID_ZEROSHOT_VIDEOCLASSIFICATION_MODELS,
|
| 111 |
+
label="Model:",
|
| 112 |
+
show_label=True,
|
| 113 |
+
value=DEFAULT_MODEL,
|
| 114 |
+
)
|
| 115 |
+
model_names_dropdown.change(fn=select_model, inputs=model_names_dropdown)
|
| 116 |
+
with gr.Tab(label="Youtube URL"):
|
| 117 |
+
gr.Markdown(
|
| 118 |
+
"### **Provide a Youtube video URL and a list of labels separated by commas**"
|
| 119 |
+
)
|
| 120 |
+
youtube_url = gr.Textbox(label="Youtube URL:", show_label=True)
|
| 121 |
+
youtube_url_labels_text = gr.Textbox(
|
| 122 |
+
label="Labels Text:", show_label=True
|
| 123 |
+
)
|
| 124 |
+
youtube_url_predict_btn = gr.Button(value="Predict")
|
| 125 |
+
with gr.Tab(label="Local File"):
|
| 126 |
+
gr.Markdown(
|
| 127 |
+
"### **Upload a video file and provide a list of labels separated by commas**"
|
| 128 |
+
)
|
| 129 |
+
video_file = gr.Video(label="Video File:", show_label=True)
|
| 130 |
+
local_video_labels_text = gr.Textbox(
|
| 131 |
+
label="Labels Text:", show_label=True
|
| 132 |
+
)
|
| 133 |
+
local_video_predict_btn = gr.Button(value="Predict")
|
| 134 |
+
with gr.Column():
|
| 135 |
+
video_gif = gr.Image(
|
| 136 |
+
label="Input Clip",
|
| 137 |
+
show_label=True,
|
| 138 |
+
)
|
| 139 |
+
with gr.Column():
|
| 140 |
+
predictions = gr.Label(label="Predictions:", show_label=True)
|
| 141 |
+
|
| 142 |
+
gr.Markdown("**Examples:**")
|
| 143 |
+
gr.Examples(
|
| 144 |
+
examples,
|
| 145 |
+
[youtube_url, youtube_url_labels_text],
|
| 146 |
+
[predictions, video_gif],
|
| 147 |
+
fn=predict,
|
| 148 |
+
cache_examples=True,
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
youtube_url_predict_btn.click(
|
| 152 |
+
predict,
|
| 153 |
+
inputs=[youtube_url, youtube_url_labels_text],
|
| 154 |
+
outputs=[predictions, video_gif],
|
| 155 |
+
)
|
| 156 |
+
local_video_predict_btn.click(
|
| 157 |
+
predict,
|
| 158 |
+
inputs=[video_file, local_video_labels_text],
|
| 159 |
+
outputs=[predictions, video_gif],
|
| 160 |
+
)
|
| 161 |
+
gr.Markdown(
|
| 162 |
+
"""
|
| 163 |
+
\n Demo created by: <a href=\"https://github.com/fcakyon\">fcakyon</a>.
|
| 164 |
+
<br> Based on this <a href=\"https://huggingface.co/docs/transformers/main/model_doc/xclip">HuggingFace model</a>.
|
| 165 |
+
"""
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
app.launch()
|