added history
Browse files
app.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
import chromadb
|
| 2 |
import pandas as pd
|
| 3 |
from sentence_transformers import SentenceTransformer
|
| 4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
@@ -8,7 +8,7 @@ from openai import OpenAI
|
|
| 8 |
import numpy as np
|
| 9 |
import requests
|
| 10 |
import chromadb
|
| 11 |
-
from chromadb import Client
|
| 12 |
from sentence_transformers import SentenceTransformer, util
|
| 13 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 14 |
from chromadb import Client
|
|
@@ -21,11 +21,8 @@ import requests
|
|
| 21 |
import time
|
| 22 |
import tempfile
|
| 23 |
|
| 24 |
-
#HF_TOKEN = os.getenv("HF_TOKEN")
|
| 25 |
-
|
| 26 |
API_KEY = os.environ.get("OPENROUTER_API_KEY")
|
| 27 |
|
| 28 |
-
|
| 29 |
# Load the Excel file
|
| 30 |
df = pd.read_excel("web_documents.xlsx", engine='openpyxl')
|
| 31 |
|
|
@@ -38,14 +35,8 @@ collection = client.get_or_create_collection(
|
|
| 38 |
metadata={"hnsw:space": "cosine"}
|
| 39 |
)
|
| 40 |
|
| 41 |
-
# Load the embedding model
|
| 42 |
-
|
| 43 |
-
#embedding_model = SentenceTransformer("BAAI/bge-m3")
|
| 44 |
-
embedding_model = SentenceTransformer("sentence-transformers/multi-qa-MiniLM-L6-cos-v1")
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
|
| 50 |
# Initialize the text splitter
|
| 51 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1200, chunk_overlap=150)
|
|
@@ -78,21 +69,12 @@ for idx, row in df.iterrows():
|
|
| 78 |
|
| 79 |
# ---------------------- Config ----------------------
|
| 80 |
SIMILARITY_THRESHOLD = 0.80
|
| 81 |
-
|
| 82 |
-
client1 = OpenAI(base_url="https://openrouter.ai/api/v1", api_key=API_KEY) # remplace par ta clé OpenRouter
|
| 83 |
-
|
| 84 |
|
| 85 |
# ---------------------- Models ----------------------
|
| 86 |
-
|
| 87 |
-
#semantic_model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2")
|
| 88 |
-
#semantic_model = SentenceTransformer("sentence-transformers/paraphrase-multilingual-mpnet-base-v2")
|
| 89 |
-
semantic_model = SentenceTransformer("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
|
| 90 |
-
|
| 91 |
|
| 92 |
-
#
|
| 93 |
-
#embedding_model = HuggingFaceEmbeddings(model_name="sentence-transformers/multi-qa-mpnet-base-dot-v1")
|
| 94 |
-
|
| 95 |
-
# ---------------------- Load QA Data ----------------------
|
| 96 |
with open("qa.json", "r", encoding="utf-8") as f:
|
| 97 |
qa_data = json.load(f)
|
| 98 |
|
|
@@ -100,7 +82,7 @@ qa_questions = list(qa_data.keys())
|
|
| 100 |
qa_answers = list(qa_data.values())
|
| 101 |
qa_embeddings = semantic_model.encode(qa_questions, convert_to_tensor=True)
|
| 102 |
|
| 103 |
-
# ---------------------- CAG ----------------------
|
| 104 |
def retrieve_from_cag(user_query):
|
| 105 |
query_embedding = semantic_model.encode(user_query, convert_to_tensor=True)
|
| 106 |
cosine_scores = util.cos_sim(query_embedding, qa_embeddings)[0]
|
|
@@ -109,21 +91,19 @@ def retrieve_from_cag(user_query):
|
|
| 109 |
|
| 110 |
print(f"[CAG] Best score: {best_score:.4f} | Closest question: {qa_questions[best_idx]}")
|
| 111 |
if best_score >= SIMILARITY_THRESHOLD:
|
| 112 |
-
return qa_answers[best_idx], best_score
|
| 113 |
else:
|
| 114 |
return None, best_score
|
| 115 |
|
| 116 |
-
# ---------------------- RAG ----------------------
|
| 117 |
-
|
| 118 |
-
#
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
query_embedding = embedding_model.encode(user_query)
|
| 127 |
results = collection.query(query_embeddings=[query_embedding], n_results=3)
|
| 128 |
|
| 129 |
if not results or not results.get('documents'):
|
|
@@ -151,11 +131,8 @@ Instructions:
|
|
| 151 |
- Use only the provided documents below to answer.
|
| 152 |
- If the answer is not in the documents, simply say: "I don't know." / "Je ne sais pas."
|
| 153 |
- Cite only the sources you use, indicated at the end of each document like (Source: https://example.com).
|
| 154 |
-
|
| 155 |
-
|
| 156 |
Documents :
|
| 157 |
{context}
|
| 158 |
-
|
| 159 |
Question : {query}
|
| 160 |
Answer :
|
| 161 |
[/INST]
|
|
@@ -171,60 +148,20 @@ Answer :
|
|
| 171 |
print(f"Erreur lors de la génération : {e}")
|
| 172 |
return "Erreur lors de la génération."
|
| 173 |
|
| 174 |
-
# ---------------------- Generation function (Huggingface) ----------------------
|
| 175 |
-
def generate_via_huggingface(context, query, max_new_tokens=512, hf_token="your_huggingface_token"):
|
| 176 |
-
print("\n--- Generating via Huggingface ---")
|
| 177 |
-
print("Context received:", context)
|
| 178 |
-
|
| 179 |
-
prompt = f"""<s>[INST]
|
| 180 |
-
You are a Moodle expert assistant.
|
| 181 |
-
|
| 182 |
-
Rules:
|
| 183 |
-
- Answer only based on the provided documents.
|
| 184 |
-
- If the answer is not found, reply: "I don't know."
|
| 185 |
-
- Only cite sources mentioned (metadata 'source').
|
| 186 |
-
|
| 187 |
-
Documents:
|
| 188 |
-
{context}
|
| 189 |
-
|
| 190 |
-
Question: {query}
|
| 191 |
-
Answer:
|
| 192 |
-
[/INST]
|
| 193 |
-
"""
|
| 194 |
-
|
| 195 |
-
API_URL = "https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1"
|
| 196 |
-
headers = {"Authorization": f"Bearer {hf_token}"}
|
| 197 |
-
payload = {
|
| 198 |
-
"inputs": prompt,
|
| 199 |
-
"parameters": {
|
| 200 |
-
"max_new_tokens": max_new_tokens
|
| 201 |
-
}
|
| 202 |
-
}
|
| 203 |
-
|
| 204 |
-
response = requests.post(API_URL, headers=headers, json=payload)
|
| 205 |
-
|
| 206 |
-
if response.status_code == 200:
|
| 207 |
-
result = response.json()
|
| 208 |
-
if isinstance(result, list) and "generated_text" in result[0]:
|
| 209 |
-
return result[0]["generated_text"].strip()
|
| 210 |
-
else:
|
| 211 |
-
return "Error: Unexpected response format."
|
| 212 |
-
else:
|
| 213 |
-
return f"Error {response.status_code}: {response.text}"
|
| 214 |
-
|
| 215 |
# ---------------------- Main Chatbot ----------------------
|
| 216 |
-
def chatbot(query):
|
| 217 |
print("\n==== New Query ====")
|
| 218 |
print("User Query:", query)
|
| 219 |
|
| 220 |
# Try to retrieve from CAG (cache)
|
| 221 |
-
answer, score = retrieve_from_cag(query)
|
| 222 |
if answer:
|
| 223 |
print("Answer retrieved from CAG cache.")
|
|
|
|
| 224 |
return answer
|
| 225 |
|
| 226 |
# If not found, retrieve from RAG
|
| 227 |
-
docs = retrieve_from_rag(query)
|
| 228 |
if docs:
|
| 229 |
context_blocks = []
|
| 230 |
for doc in docs:
|
|
@@ -241,47 +178,17 @@ def chatbot(query):
|
|
| 241 |
|
| 242 |
context = "\n\n".join(context_blocks)
|
| 243 |
|
| 244 |
-
# Choose the generation backend (OpenRouter
|
| 245 |
response = generate_via_openrouter(context, query)
|
|
|
|
| 246 |
return response
|
| 247 |
|
| 248 |
else:
|
| 249 |
print("No relevant documents found.")
|
|
|
|
| 250 |
return "Je ne sais pas."
|
| 251 |
|
| 252 |
-
|
| 253 |
# ---------------------- Gradio App ----------------------
|
| 254 |
-
|
| 255 |
-
# Define the chatbot response function
|
| 256 |
-
#def ask(user_message, chat_history):
|
| 257 |
-
# if not user_message:
|
| 258 |
-
# return chat_history, chat_history, ""
|
| 259 |
-
#
|
| 260 |
-
# Get chatbot response
|
| 261 |
-
# response = chatbot(user_message)
|
| 262 |
-
|
| 263 |
-
# Update chat history
|
| 264 |
-
# chat_history.append((user_message, response))
|
| 265 |
-
# return chat_history, chat_history, ""
|
| 266 |
-
|
| 267 |
-
# Initialize chat history with a welcome message
|
| 268 |
-
#initial_message = (None, "Hello, how can I help you with Moodle?")
|
| 269 |
-
|
| 270 |
-
# Build Gradio interface
|
| 271 |
-
#with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 272 |
-
#chat_history = gr.State([initial_message]) # <-- Move inside here!
|
| 273 |
-
|
| 274 |
-
# chatbot_ui = gr.Chatbot(value=[initial_message])
|
| 275 |
-
# question = gr.Textbox(placeholder="Ask me anything about Moodle...", show_label=False)
|
| 276 |
-
# clear_button = gr.Button("Clear")
|
| 277 |
-
|
| 278 |
-
# question.submit(ask, [question, chat_history], [chatbot_ui, chat_history, question])
|
| 279 |
-
# clear_button.click(lambda: ([initial_message], [initial_message], ""), None, [chatbot_ui, chat_history, question], queue=False)
|
| 280 |
-
|
| 281 |
-
#demo.queue()
|
| 282 |
-
#demo.launch(share=False)
|
| 283 |
-
# Initialize chat history with a welcome message
|
| 284 |
-
|
| 285 |
def save_chat_to_file(chat_history):
|
| 286 |
timestamp = time.strftime("%Y%m%d-%H%M%S")
|
| 287 |
filename = f"chat_history_{timestamp}.json"
|
|
@@ -294,17 +201,18 @@ def save_chat_to_file(chat_history):
|
|
| 294 |
with open(file_path, "w", encoding="utf-8") as f:
|
| 295 |
json.dump(chat_history, f, ensure_ascii=False, indent=2)
|
| 296 |
|
| 297 |
-
return file_path
|
| 298 |
|
| 299 |
def ask(user_message, chat_history):
|
| 300 |
if not user_message:
|
| 301 |
return chat_history, chat_history, ""
|
| 302 |
|
| 303 |
-
response = chatbot(user_message)
|
| 304 |
chat_history.append((user_message, response))
|
| 305 |
|
| 306 |
return chat_history, chat_history, ""
|
| 307 |
|
|
|
|
| 308 |
initial_message = (None, "Hello, how can I help you with Moodle?")
|
| 309 |
|
| 310 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
@@ -313,11 +221,11 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 313 |
chatbot_ui = gr.Chatbot(value=[initial_message])
|
| 314 |
question = gr.Textbox(placeholder="Ask me anything about Moodle...", show_label=False)
|
| 315 |
clear_button = gr.Button("Clear")
|
| 316 |
-
save_button = gr.Button("Save Chat")
|
| 317 |
|
| 318 |
question.submit(ask, [question, chat_history], [chatbot_ui, chat_history, question])
|
| 319 |
clear_button.click(lambda: ([initial_message], [initial_message], ""), None, [chatbot_ui, chat_history, question], queue=False)
|
| 320 |
-
|
| 321 |
save_button.click(save_chat_to_file, [chat_history], gr.File(label="Download your chat history"))
|
| 322 |
|
| 323 |
demo.queue()
|
|
|
|
| 1 |
+
import chromadb
|
| 2 |
import pandas as pd
|
| 3 |
from sentence_transformers import SentenceTransformer
|
| 4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
|
| 8 |
import numpy as np
|
| 9 |
import requests
|
| 10 |
import chromadb
|
| 11 |
+
from chromadb import Client
|
| 12 |
from sentence_transformers import SentenceTransformer, util
|
| 13 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 14 |
from chromadb import Client
|
|
|
|
| 21 |
import time
|
| 22 |
import tempfile
|
| 23 |
|
|
|
|
|
|
|
| 24 |
API_KEY = os.environ.get("OPENROUTER_API_KEY")
|
| 25 |
|
|
|
|
| 26 |
# Load the Excel file
|
| 27 |
df = pd.read_excel("web_documents.xlsx", engine='openpyxl')
|
| 28 |
|
|
|
|
| 35 |
metadata={"hnsw:space": "cosine"}
|
| 36 |
)
|
| 37 |
|
| 38 |
+
# Load the embedding model
|
| 39 |
+
embedding_model = SentenceTransformer('sentence-transformers/paraphrase-MiniLM-L6-v2')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
# Initialize the text splitter
|
| 42 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1200, chunk_overlap=150)
|
|
|
|
| 69 |
|
| 70 |
# ---------------------- Config ----------------------
|
| 71 |
SIMILARITY_THRESHOLD = 0.80
|
| 72 |
+
client1 = OpenAI(base_url="https://openrouter.ai/api/v1", api_key=API_KEY) # Replace with your OpenRouter API key
|
|
|
|
|
|
|
| 73 |
|
| 74 |
# ---------------------- Models ----------------------
|
| 75 |
+
semantic_model = SentenceTransformer("sentence-transformers/all-mpnet-base-v2")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
|
| 77 |
+
# Load QA Data
|
|
|
|
|
|
|
|
|
|
| 78 |
with open("qa.json", "r", encoding="utf-8") as f:
|
| 79 |
qa_data = json.load(f)
|
| 80 |
|
|
|
|
| 82 |
qa_answers = list(qa_data.values())
|
| 83 |
qa_embeddings = semantic_model.encode(qa_questions, convert_to_tensor=True)
|
| 84 |
|
| 85 |
+
# ---------------------- History-Aware CAG ----------------------
|
| 86 |
def retrieve_from_cag(user_query):
|
| 87 |
query_embedding = semantic_model.encode(user_query, convert_to_tensor=True)
|
| 88 |
cosine_scores = util.cos_sim(query_embedding, qa_embeddings)[0]
|
|
|
|
| 91 |
|
| 92 |
print(f"[CAG] Best score: {best_score:.4f} | Closest question: {qa_questions[best_idx]}")
|
| 93 |
if best_score >= SIMILARITY_THRESHOLD:
|
| 94 |
+
return qa_answers[best_idx], best_score # Only return the answer
|
| 95 |
else:
|
| 96 |
return None, best_score
|
| 97 |
|
| 98 |
+
# ---------------------- History-Aware RAG ----------------------
|
| 99 |
+
def retrieve_from_rag(user_query, chat_history):
|
| 100 |
+
# Combine the previous chat history with the current query for context
|
| 101 |
+
history_context = " ".join([f"User: {msg[0]} Bot: {msg[1]}" for msg in chat_history]) + " "
|
| 102 |
+
full_query = history_context + user_query
|
| 103 |
+
|
| 104 |
+
print("Searching in RAG with history context...")
|
| 105 |
+
|
| 106 |
+
query_embedding = embedding_model.encode(full_query)
|
|
|
|
|
|
|
| 107 |
results = collection.query(query_embeddings=[query_embedding], n_results=3)
|
| 108 |
|
| 109 |
if not results or not results.get('documents'):
|
|
|
|
| 131 |
- Use only the provided documents below to answer.
|
| 132 |
- If the answer is not in the documents, simply say: "I don't know." / "Je ne sais pas."
|
| 133 |
- Cite only the sources you use, indicated at the end of each document like (Source: https://example.com).
|
|
|
|
|
|
|
| 134 |
Documents :
|
| 135 |
{context}
|
|
|
|
| 136 |
Question : {query}
|
| 137 |
Answer :
|
| 138 |
[/INST]
|
|
|
|
| 148 |
print(f"Erreur lors de la génération : {e}")
|
| 149 |
return "Erreur lors de la génération."
|
| 150 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
# ---------------------- Main Chatbot ----------------------
|
| 152 |
+
def chatbot(query, chat_history):
|
| 153 |
print("\n==== New Query ====")
|
| 154 |
print("User Query:", query)
|
| 155 |
|
| 156 |
# Try to retrieve from CAG (cache)
|
| 157 |
+
answer, score = retrieve_from_cag(query, chat_history)
|
| 158 |
if answer:
|
| 159 |
print("Answer retrieved from CAG cache.")
|
| 160 |
+
chat_history.append((query, answer)) # Append the new question-answer pair to history
|
| 161 |
return answer
|
| 162 |
|
| 163 |
# If not found, retrieve from RAG
|
| 164 |
+
docs = retrieve_from_rag(query, chat_history)
|
| 165 |
if docs:
|
| 166 |
context_blocks = []
|
| 167 |
for doc in docs:
|
|
|
|
| 178 |
|
| 179 |
context = "\n\n".join(context_blocks)
|
| 180 |
|
| 181 |
+
# Choose the generation backend (OpenRouter)
|
| 182 |
response = generate_via_openrouter(context, query)
|
| 183 |
+
chat_history.append((query, response)) # Append the new question-answer pair to history
|
| 184 |
return response
|
| 185 |
|
| 186 |
else:
|
| 187 |
print("No relevant documents found.")
|
| 188 |
+
chat_history.append((query, "Je ne sais pas."))
|
| 189 |
return "Je ne sais pas."
|
| 190 |
|
|
|
|
| 191 |
# ---------------------- Gradio App ----------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
def save_chat_to_file(chat_history):
|
| 193 |
timestamp = time.strftime("%Y%m%d-%H%M%S")
|
| 194 |
filename = f"chat_history_{timestamp}.json"
|
|
|
|
| 201 |
with open(file_path, "w", encoding="utf-8") as f:
|
| 202 |
json.dump(chat_history, f, ensure_ascii=False, indent=2)
|
| 203 |
|
| 204 |
+
return file_path
|
| 205 |
|
| 206 |
def ask(user_message, chat_history):
|
| 207 |
if not user_message:
|
| 208 |
return chat_history, chat_history, ""
|
| 209 |
|
| 210 |
+
response = chatbot(user_message, chat_history)
|
| 211 |
chat_history.append((user_message, response))
|
| 212 |
|
| 213 |
return chat_history, chat_history, ""
|
| 214 |
|
| 215 |
+
# Initialize chat history with a welcome message
|
| 216 |
initial_message = (None, "Hello, how can I help you with Moodle?")
|
| 217 |
|
| 218 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
|
|
| 221 |
chatbot_ui = gr.Chatbot(value=[initial_message])
|
| 222 |
question = gr.Textbox(placeholder="Ask me anything about Moodle...", show_label=False)
|
| 223 |
clear_button = gr.Button("Clear")
|
| 224 |
+
save_button = gr.Button("Save Chat")
|
| 225 |
|
| 226 |
question.submit(ask, [question, chat_history], [chatbot_ui, chat_history, question])
|
| 227 |
clear_button.click(lambda: ([initial_message], [initial_message], ""), None, [chatbot_ui, chat_history, question], queue=False)
|
| 228 |
+
|
| 229 |
save_button.click(save_chat_to_file, [chat_history], gr.File(label="Download your chat history"))
|
| 230 |
|
| 231 |
demo.queue()
|