Spaces:
Running
on
Zero
Running
on
Zero
| from transformers import pipeline, TextIteratorStreamer | |
| from threading import Thread | |
| import gradio as gr | |
| import spaces | |
| import re | |
| from openai_harmony import ( | |
| load_harmony_encoding, | |
| HarmonyEncodingName, | |
| Role, | |
| Message, | |
| Conversation, | |
| SystemContent, | |
| DeveloperContent, | |
| ReasoningEffort, | |
| ) | |
| # regex config | |
| RE_REASONING = re.compile(r'(?i)Reasoning:\s*(low|medium|high)') | |
| RE_FINAL_MARKER = re.compile(r'(?i)assistantfinal') | |
| RE_ANALYSIS_PREFIX = re.compile(r'(?i)^analysis\s*') | |
| # I think for system prompt reasoning level OpenAI mentioned you should do parsing so here's | |
| def parse_reasoning_and_instructions(system_prompt: str): | |
| instructions = system_prompt or "You are a helpful assistant." | |
| match = RE_REASONING.search(instructions) | |
| effort_key = match.group(1).lower() if match else 'medium' | |
| effort = { | |
| 'low': ReasoningEffort.LOW, | |
| 'medium': ReasoningEffort.MEDIUM, | |
| 'high': ReasoningEffort.HIGH, | |
| }.get(effort_key, ReasoningEffort.MEDIUM) | |
| cleaned_instructions = RE_REASONING.sub('', instructions).strip() | |
| return effort, cleaned_instructions | |
| model_id = "openai/gpt-oss-20b" | |
| pipe = pipeline( | |
| "text-generation", | |
| model=model_id, | |
| torch_dtype="auto", | |
| device_map="auto", | |
| trust_remote_code=True, | |
| ) | |
| enc = load_harmony_encoding(HarmonyEncodingName.HARMONY_GPT_OSS) | |
| def format_conversation_history(chat_history): | |
| messages = [] | |
| for item in chat_history: | |
| role = item["role"] | |
| content = item["content"] | |
| if isinstance(content, list): | |
| content = content[0]["text"] if content and "text" in content[0] else str(content) | |
| messages.append({"role": role, "content": content}) | |
| return messages | |
| def generate_response(input_data, chat_history, max_new_tokens, system_prompt, temperature, top_p, top_k, repetition_penalty): | |
| new_message = {"role": "user", "content": input_data} | |
| processed_history = format_conversation_history(chat_history) | |
| effort, instructions = parse_reasoning_and_instructions(system_prompt) | |
| system_content = SystemContent.new().with_reasoning_effort(effort) | |
| developer_content = DeveloperContent.new().with_instructions(instructions) | |
| harmony_messages = [ | |
| Message.from_role_and_content(Role.SYSTEM, system_content), | |
| Message.from_role_and_content(Role.DEVELOPER, developer_content), | |
| ] | |
| for m in processed_history + [new_message]: | |
| role = Role.USER if m["role"] == "user" else Role.ASSISTANT | |
| harmony_messages.append(Message.from_role_and_content(role, m["content"])) | |
| conversation = Conversation.from_messages(harmony_messages) | |
| prompt_tokens = enc.render_conversation_for_completion(conversation, Role.ASSISTANT) | |
| prompt_text = pipe.tokenizer.decode(prompt_tokens, skip_special_tokens=False) | |
| streamer = TextIteratorStreamer(pipe.tokenizer, skip_prompt=True, skip_special_tokens=True) | |
| generation_kwargs = { | |
| "max_new_tokens": max_new_tokens, | |
| "do_sample": True, | |
| "temperature": temperature, | |
| "top_p": top_p, | |
| "top_k": top_k, | |
| "repetition_penalty": repetition_penalty, | |
| "streamer": streamer, | |
| "return_full_text": False, | |
| } | |
| thread = Thread(target=pipe, args=(prompt_text,), kwargs=generation_kwargs) | |
| thread.start() | |
| # parsing thinking | |
| thinking = "" | |
| final = "" | |
| started_final = False | |
| for chunk in streamer: | |
| if not started_final: | |
| parts = RE_FINAL_MARKER.split(chunk, maxsplit=1) | |
| thinking += parts[0] | |
| if len(parts) > 1: | |
| final += parts[-1] | |
| started_final = True | |
| else: | |
| final += chunk | |
| clean_thinking = RE_ANALYSIS_PREFIX.sub('', thinking).strip() | |
| clean_final = final.strip() | |
| formatted = f"<details open><summary>Click to view Thinking Process</summary>\n\n{clean_thinking}\n\n</details>\n\n{clean_final}" | |
| yield formatted | |
| demo = gr.ChatInterface( | |
| fn=generate_response, | |
| additional_inputs=[ | |
| gr.Slider(label="Max new tokens", minimum=64, maximum=4096, step=1, value=2048), | |
| gr.Textbox( | |
| label="System Prompt", | |
| value="You are a helpful assistant. Reasoning: medium", | |
| lines=4, | |
| placeholder="Change system prompt" | |
| ), | |
| gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, step=0.1, value=0.7), | |
| gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9), | |
| gr.Slider(label="Top-k", minimum=1, maximum=100, step=1, value=50), | |
| gr.Slider(label="Repetition Penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.0) | |
| ], | |
| examples=[ | |
| [{"text": "Explain Newton laws clearly and concisely"}], | |
| [{"text": "What are the benefits of open weight AI models"}], | |
| [{"text": "Write a Python function to calculate the Fibonacci sequence"}], | |
| ], | |
| cache_examples=False, | |
| type="messages", | |
| description="""# gpt-oss-20b Demo | |
| Give it a couple of seconds to start. You can adjust reasoning level in the system prompt like "Reasoning: high." Click to view thinking process (default is on).""", | |
| fill_height=True, | |
| textbox=gr.Textbox( | |
| label="Query Input", | |
| placeholder="Type your prompt" | |
| ), | |
| stop_btn="Stop Generation", | |
| multimodal=False, | |
| theme=gr.themes.Soft() | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() |