Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 19,395 Bytes
d97ec7b 5200fdc d97ec7b 5200fdc d97ec7b 5200fdc d97ec7b 5200fdc d97ec7b 5200fdc d97ec7b 5200fdc d97ec7b 5200fdc d97ec7b 5200fdc d97ec7b 5200fdc d97ec7b dbfdab8 d97ec7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 |
import datetime
import json
import os
from pathlib import Path
import datasets
import gradio as gr
import pandas as pd
import requests
from apscheduler.schedulers.background import BackgroundScheduler
# InfoStrings
from content import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
CONTACT_DATASET,
INTRODUCTION_TEXT,
LEADERBOARD_PATH,
OWNER,
RESULTS_DATASET,
SCENARIO_LIST,
SUBMISSION_TEXT,
TITLE,
)
from gradio_leaderboard import ColumnFilter, Leaderboard, SelectColumns
from huggingface_hub import create_repo, snapshot_download, upload_folder
from utils import api, Experiment, format_log, model_hyperlink, TOKEN
contact_infos = datasets.load_dataset(
CONTACT_DATASET, token=TOKEN, verification_mode=datasets.VerificationMode.NO_CHECKS
) # download_mode="force_redownload"
def get_display_name(capability: str) -> str:
"""
Convert internal capability names to user-friendly display names.
Args:
capability: Internal capability name from the benchmark
Returns:
User-friendly display name for the leaderboard
"""
if "noise" in capability:
return "noise"
elif "agent2agent" in capability or "a2a" in capability:
return "A2A"
else:
return capability
def cleanup(row) -> dict:
"""
Transform raw evaluation data into a clean format for the leaderboard display.
Args:
row: Raw evaluation result row from the dataset
Returns:
Dictionary with cleaned and formatted data for leaderboard display
"""
result = {}
# Basic model information
result["Model"] = row["metadata.model"]
result["Provider"] = row["metadata.model_provider"]
result["Total score (%)"] = round(row["statistics.global.macro_success_rate"], 1)
# Define the order of capability columns for consistent display
scenario_order = [
"execution",
"search",
"ambiguity",
"adaptability",
"time",
"mini_noise",
"mini_agent2agent",
]
# Process each capability score with aligned formatting
for capability in scenario_order:
if capability in SCENARIO_LIST:
display_name = get_display_name(capability)
# Extract score and standard error
score = row[f"statistics.per_capability.{capability}.success_rate"]
sem = row[f"statistics.per_capability.{capability}.success_rate_sem"]
# Format with decimal alignment using non-breaking spaces
score_str = f"{score:4.1f}".replace(" ", "\u00A0")
sem_str = f"{sem:.1f}" # No width formatting for SEM to avoid extra spaces
result[f"{display_name} (%)"] = f"{score_str} Β± {sem_str}"
# Add metadata fields
result["Number of runs"] = (
row["statistics.global.total_runs"] / row["statistics.global.total_scenarios"]
if row["statistics.global.total_scenarios"] != 0
else 0
)
result["Submitter"] = row["metadata.organisation"]
result["Submission date"] = row["metadata.timestamp"][:10]
return result
def get_dataframe_from_results() -> pd.DataFrame:
"""
Load and process evaluation results from the dataset to create a leaderboard DataFrame.
Retrieves raw evaluation data, processes it through the cleanup function,
and returns a sorted DataFrame ready for leaderboard display.
Returns:
Pandas DataFrame with processed leaderboard data, sorted by total score
Returns empty DataFrame if no data is available
"""
split = "train"
# Load evaluation results dataset
try:
eval_results = datasets.load_dataset(
RESULTS_DATASET,
token=TOKEN,
verification_mode=datasets.VerificationMode.NO_CHECKS,
)
except datasets.data_files.EmptyDatasetError:
eval_results = datasets.DatasetDict()
# Return empty DataFrame if no data available
if not eval_results or split not in eval_results or len(eval_results[split]) == 0:
return pd.DataFrame([])
results = eval_results[split]
local_df = results.flatten()
# Define columns to extract from the raw data
metadata_columns = [
"metadata.model",
"metadata.model_provider",
"metadata.organisation",
"metadata.timestamp",
"metadata.url",
]
global_stats_columns = [
"statistics.global.macro_success_rate",
"statistics.global.total_runs",
"statistics.global.total_scenarios",
]
# Add per-capability statistics columns
capability_columns = []
for capability in SCENARIO_LIST:
capability_columns.extend(
[
f"statistics.per_capability.{capability}.success_rate",
f"statistics.per_capability.{capability}.success_rate_sem",
]
)
# Combine all required columns
columns = metadata_columns + global_stats_columns + capability_columns
# Process the data: select columns, clean up, and remove original columns
local_df = local_df.select_columns(columns)
mapped_df = local_df.map(cleanup, batched=False)
mapped_df = mapped_df.remove_columns(columns)
# Convert to pandas DataFrame and sort by total score (highest first)
df = pd.DataFrame(mapped_df)
df = df.sort_values(by=["Total score (%)"], ascending=False)
return df
# ATM only one set
eval_dataframe_val = get_dataframe_from_results()
def restart_space():
api.restart_space(repo_id=LEADERBOARD_PATH, token=TOKEN)
def add_new_eval(
organisation: str,
path_to_repository: str,
profile: gr.OAuthProfile,
token: gr.OAuthToken,
):
# ---- USER CHECKS ----
# Was the profile created less than 2 month ago?
user_data = requests.get(
f"https://huggingface.co/api/users/{profile.username}/overview"
)
creation_date = json.loads(user_data.content)["createdAt"]
if datetime.datetime.now() - datetime.datetime.strptime(
creation_date, "%Y-%m-%dT%H:%M:%S.%fZ"
) < datetime.timedelta(days=60):
raise Exception("This account is not authorized to submit on Gaia2.")
# Can't submit several times per day
contact_infos = datasets.load_dataset(
CONTACT_DATASET,
token=TOKEN,
verification_mode=datasets.VerificationMode.NO_CHECKS,
)
user_submission_dates = sorted(
row["date"]
for row in contact_infos["train"]
if row["username"] == profile.username
)
if len(user_submission_dates) > 0 and user_submission_dates[
-1
] == datetime.datetime.today().strftime("%Y-%m-%d"):
raise Exception("You already submitted once today, please try again tomorrow.")
# ---- EXPERIMENT MANAGEMENT ----
# Download locally with HF hub
snapshot_path = snapshot_download(
repo_id=path_to_repository, token=token.token, repo_type="dataset"
)
# Test completeness with datasets
try:
for scenario in SCENARIO_LIST:
# Loading what the user provided
datasets.load_dataset(
snapshot_path,
scenario,
split="test",
verification_mode=datasets.VerificationMode.NO_CHECKS,
)
except Exception as e:
print(e)
raise ValueError(
f"We cannot load the scenario {scenario} for your dataset ({path_to_repository}). Please make sure the dataset is accessible and all subsets are there."
)
with open(Path(snapshot_path, "computed_stats.json")) as f:
results = json.load(f)
model = results["metadata"]["model"]
results["metadata"]["organisation"] = organisation
results["metadata"]["url"] = path_to_repository
try:
ds = datasets.load_dataset(RESULTS_DATASET, split="train")
except datasets.data_files.EmptyDatasetError:
ds = datasets.Dataset.from_dict({})
if results in ds:
raise Exception("This precise model and results file was already submitted")
ds = ds.add_item(results)
ds.push_to_hub(RESULTS_DATASET, split="train", private=True)
experiment = Experiment(path_to_repository, organisation, model)
# Save copy to hub
create_repo(
repo_id=f"{OWNER}/{str(experiment)}",
repo_type="dataset",
token=TOKEN,
private=True,
)
upload_folder(
folder_path=snapshot_path,
repo_id=f"{OWNER}/{str(experiment)}",
repo_type="dataset",
token=TOKEN,
)
print(f"Adding new eval: {str(experiment)}")
# SAVE ALL INFO
contact_info = {
"model": experiment.model,
"path_to_hub": experiment.path_to_hub,
"path_to_hub_private_copy": f"{OWNER}/{str(experiment)}",
"organisation": experiment.organisation,
"date": experiment.cur_date,
"username": profile.username,
"mail": getattr(profile, "email", None),
}
contact_infos["test"] = contact_infos["test"].add_item(contact_info)
contact_infos.push_to_hub(CONTACT_DATASET, token=TOKEN)
return format_log(
f"Model {model} submitted by {organisation} successfully.\nPlease wait a couple minutes and refresh the leaderboard to see your score displayed."
)
def refresh():
return get_dataframe_from_results()
# Custom CSS for sleek styling
custom_css = """
<style>
/* Global styling */
.gradio-container {
max-width: 1400px !important;
margin: auto;
padding: 20px;
background: linear-gradient(135deg, #f8fbff 0%, #e3f2fd 100%);
min-height: auto !important; /* override HF default */
padding-bottom: 0 !important; /* remove extra bottom padding */
}
html, body, #root {
margin: 0;
padding: 0;
height: auto !important; /* don't lock to viewport height */
min-height: 100%;
overflow-x: hidden !important;
overflow-y: auto !important; /* ensure vertical scroll is possible */
box-sizing: border-box;
}
/* Markdown text styling */
.markdown-text {
background: white;
padding: 25px;
border-radius: 12px;
box-shadow: 0 4px 20px rgba(0,0,0,0.08);
margin: 20px 0;
border-left: 4px solid #0081FB;
font-size: 16px;
line-height: 1.6;
}
/* Button styling */
.gr-button {
background: linear-gradient(135deg, #0081FB 0%, #42A5F5 100%) !important;
border: none !important;
border-radius: 8px !important;
color: white !important;
font-weight: 600 !important;
padding: 12px 24px !important;
transition: all 0.3s ease !important;
box-shadow: 0 4px 15px rgba(0, 129, 251, 0.3) !important;
}
.gr-button:hover {
transform: translateY(-2px) !important;
box-shadow: 0 8px 25px rgba(0, 129, 251, 0.4) !important;
}
/* Input fields styling */
.gr-textbox {
border-radius: 8px !important;
border: 2px solid #e1e5e9 !important;
background: white !important;
transition: all 0.3s ease !important;
}
.gr-textbox:focus {
border-color: #667eea !important;
box-shadow: 0 0 0 3px rgba(102, 126, 234, 0.1) !important;
}
/* Accordion styling */
.gr-accordion {
background: white !important;
border-radius: 12px !important;
box-shadow: 0 4px 20px rgba(0,0,0,0.08) !important;
border: none !important;
margin: 15px 0 !important;
}
/* Leaderboard styling */
.leaderboard-container {
background: white !important;
border-radius: 15px !important;
box-shadow: 0 8px 32px rgba(0,0,0,0.1) !important;
overflow: hidden !important;
margin: 25px 0 !important;
border: none !important;
}
/* Remove any default Gradio gray backgrounds */
.gradio-container .gr-column,
.gradio-container .gr-row {
background: transparent !important;
}
/* Ensure leaderboard table has clean white background */
.leaderboard-container table,
.leaderboard-container .gr-table {
background: white !important;
border: none !important;
}
/* Submission form styling */
.submission-section {
background: white;
padding: 30px;
border-radius: 15px;
box-shadow: 0 6px 25px rgba(0,0,0,0.08);
margin: 25px 0;
}
</style>
"""
demo = gr.Blocks(
# css=custom_css,
theme=gr.themes.Soft(
font=[gr.themes.GoogleFont("Roboto"), "Arial", "sans-serif"], primary_hue="blue"
),
)
with demo:
gr.HTML(TITLE)
with gr.Accordion("About", open=True):
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
# Enhanced leaderboard with custom styling
with gr.Column(elem_classes="leaderboard-container"):
# gr.HTML(
# """
# <div style="padding: 20px 20px 0 20px;">
# <h2 style="margin: 0; font-weight: 700; font-size: 1.8em;">
# π Gaia2 Leaderboard Rankings
# </h2>
# <p style="margin: 10px 0 20px 0; color: #666; font-size: 16px;">
# Click on column headers to sort β’ Use filters to narrow results
# </p>
# </div>
# """
# )
leaderboard_table_val = Leaderboard(
value=eval_dataframe_val,
select_columns=SelectColumns(
default_selection=[
"Model",
"Provider",
"Total score (%)",
"execution (%)",
"search (%)",
"ambiguity (%)",
"adaptability (%)",
"time (%)",
"noise (%)",
"A2A (%)",
"Submission date",
],
cant_deselect=[
"Model",
"Provider",
"Total score (%)",
"Submission date",
],
),
search_columns=["Model", "Provider", "Submitter"],
filter_columns=[
"Provider",
ColumnFilter("Model", type="dropdown", label="π Select Model"),
],
)
# Enhanced submission section
with gr.Column(elem_classes="submission-section"):
gr.HTML(
"""
<h2 style="margin: 0 0 20px 0; font-weight: 700; font-size: 1.8em;">
π Submit Your Model
</h2>
"""
)
with gr.Accordion("π How to submit", open=True):
gr.Markdown(SUBMISSION_TEXT, elem_classes="markdown-text")
with gr.Row(equal_height=True):
with gr.Column(scale=1):
gr.LoginButton(size="lg")
with gr.Column(scale=2):
organisation_tbox = gr.Textbox(
label="π’ Organization",
placeholder="Enter your organization name",
container=True,
)
with gr.Column(scale=3):
dataset_tbox = gr.Textbox(
label="π Hub Dataset Path",
placeholder="username/dataset-name",
container=True,
)
with gr.Column(scale=1):
submit_button = gr.Button("Submit", variant="primary", size="lg")
with gr.Column(scale=1):
refresh_button = gr.Button(
"π Refresh the display", variant="secondary", size="lg"
)
submission_result = gr.Markdown()
with gr.Column():
gr.HTML(
"""
<div style="text-align: center; margin: 20px 0; display: flex; justify-content: center; gap: 50px; flex-wrap: wrap;">
<!-- GitHub Button -->
<a href="https://github.com/facebookresearch/meta-agents-research-environments" target="_blank"
style="display: inline-flex; align-items: center; justify-content: center; gap: 10px;
background: linear-gradient(135deg, #24292e 0%, #000000 100%);
color: white; font-weight: 600; padding: 14px 28px;
border-radius: 10px; text-decoration: none; font-size: 16px;
box-shadow: 0 4px 12px rgba(0,0,0,0.3); transition: all 0.3s ease;
min-width: 220px; text-align: center;">
<svg xmlns="http://www.w3.org/2000/svg" width="20" height="20" fill="white" viewBox="0 0 24 24">
<path d="M12 .5C5.7.5.5 5.7.5 12c0 5.1 3.3 9.4 7.9 10.9.6.1.8-.2.8-.6v-2.1c-3.2.7-3.9-1.4-3.9-1.4-.5-1.2-1.2-1.6-1.2-1.6-1-.7.1-.7.1-.7 1.1.1 1.7 1.1 1.7 1.1 1 .1.8 1.4 2.9 1.9.3-.8.6-1.3.6-1.3-2.6-.3-5.3-1.3-5.3-5.8 0-1.3.5-2.4 1.1-3.3 0-.3-.5-1.6.1-3.2 0 0 1-.3 3.3 1.2a11.5 11.5 0 0 1 6 0c2.3-1.5 3.3-1.2 3.3-1.2.6 1.6.1 2.9.1 3.2.7.9 1.1 2 1.1 3.3 0 4.5-2.7 5.5-5.3 5.8.4.3.7 1 .7 2v3c0 .3.2.7.8.6A11.5 11.5 0 0 0 23.5 12C23.5 5.7 18.3.5 12 .5Z"/>
</svg>
Star ARE on GitHub β
</a>
<!-- Blog Post -->
<a href="https://ai.meta.com/research/publications/are-scaling-up-agent-environments-and-evaluations/" target="_blank"
style="display: inline-flex; align-items: center; justify-content: center; gap: 10px;
background: linear-gradient(135deg, #0081FB 0%, #42A5F5 100%);
color: white; font-weight: 600; padding: 14px 28px;
border-radius: 10px; text-decoration: none; font-size: 16px;
box-shadow: 0 4px 12px rgba(0,0,0,0.25); transition: all 0.3s ease;
min-width: 220px; text-align: center;">
π§βπ¬ Read the paper
</a>
<!-- Demo Button -->
<a href="https://huggingface.co/spaces/meta-agents-research-environments/demo" target="_blank"
style="display: inline-flex; align-items: center; justify-content: center; gap: 10px;
background: linear-gradient(135deg, #0081FB 0%, #42A5F5 100%);
color: white; font-weight: 600; padding: 14px 28px;
border-radius: 10px; text-decoration: none; font-size: 16px;
box-shadow: 0 4px 12px rgba(0,0,0,0.25); transition: all 0.3s ease;
min-width: 220px; text-align: center;">
π Try the ARE Demo
</a>
</div>
"""
)
with gr.Column():
with gr.Accordion("π Citation", open=True):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
show_copy_button=True,
)
submit_button.click(
add_new_eval,
[organisation_tbox, dataset_tbox],
submission_result,
)
refresh_button.click(
refresh,
inputs=[],
outputs=[leaderboard_table_val],
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=3600)
scheduler.start()
demo.launch(debug=True, server_name="0.0.0.0", server_port=7860)
|