Rename file_processing.py to services.py
Browse files- file_processing.py +0 -90
- services.py +109 -0
file_processing.py
DELETED
|
@@ -1,90 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import mimetypes
|
| 3 |
-
import PyPDF2
|
| 4 |
-
import docx
|
| 5 |
-
import cv2
|
| 6 |
-
import numpy as np
|
| 7 |
-
from PIL import Image
|
| 8 |
-
import pytesseract
|
| 9 |
-
|
| 10 |
-
def process_image_for_model(image):
|
| 11 |
-
"""Convert image to base64 for model input"""
|
| 12 |
-
if image is None:
|
| 13 |
-
return None
|
| 14 |
-
|
| 15 |
-
# Convert numpy array to PIL Image if needed
|
| 16 |
-
import io
|
| 17 |
-
import base64
|
| 18 |
-
|
| 19 |
-
# Handle numpy array from Gradio
|
| 20 |
-
if isinstance(image, np.ndarray):
|
| 21 |
-
image = Image.fromarray(image)
|
| 22 |
-
|
| 23 |
-
buffer = io.BytesIO()
|
| 24 |
-
image.save(buffer, format='PNG')
|
| 25 |
-
img_str = base64.b64encode(buffer.getvalue()).decode()
|
| 26 |
-
return f"data:image/png;base64,{img_str}"
|
| 27 |
-
|
| 28 |
-
def extract_text_from_image(image_path):
|
| 29 |
-
"""Extract text from image using OCR"""
|
| 30 |
-
try:
|
| 31 |
-
# Check if tesseract is available
|
| 32 |
-
try:
|
| 33 |
-
pytesseract.get_tesseract_version()
|
| 34 |
-
except Exception:
|
| 35 |
-
return "Error: Tesseract OCR is not installed. Please install Tesseract to extract text from images. See install_tesseract.md for instructions."
|
| 36 |
-
|
| 37 |
-
image = cv2.imread(image_path)
|
| 38 |
-
if image is None:
|
| 39 |
-
return "Error: Could not read image file"
|
| 40 |
-
|
| 41 |
-
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 42 |
-
gray = cv2.cvtColor(image_rgb, cv2.COLOR_RGB2GRAY)
|
| 43 |
-
_, binary = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
| 44 |
-
text = pytesseract.image_to_string(binary, config='--psm 6')
|
| 45 |
-
return text.strip() if text.strip() else "No text found in image"
|
| 46 |
-
|
| 47 |
-
except Exception as e:
|
| 48 |
-
return f"Error extracting text from image: {e}"
|
| 49 |
-
|
| 50 |
-
def extract_text_from_file(file_path):
|
| 51 |
-
if not file_path:
|
| 52 |
-
return ""
|
| 53 |
-
ext = os.path.splitext(file_path)[1].lower()
|
| 54 |
-
try:
|
| 55 |
-
if ext == ".pdf":
|
| 56 |
-
with open(file_path, "rb") as f:
|
| 57 |
-
reader = PyPDF2.PdfReader(f)
|
| 58 |
-
return "\n".join(page.extract_text() or "" for page in reader.pages)
|
| 59 |
-
elif ext in [".txt", ".md", ".csv"]:
|
| 60 |
-
with open(file_path, "r", encoding="utf-8") as f:
|
| 61 |
-
return f.read()
|
| 62 |
-
elif ext == ".docx":
|
| 63 |
-
doc = docx.Document(file_path)
|
| 64 |
-
return "\n".join([para.text for para in doc.paragraphs])
|
| 65 |
-
elif ext.lower() in [".jpg", ".jpeg", ".png", ".bmp", ".tiff", ".tif", ".gif", ".webp"]:
|
| 66 |
-
return extract_text_from_image(file_path)
|
| 67 |
-
else:
|
| 68 |
-
return ""
|
| 69 |
-
except Exception as e:
|
| 70 |
-
return f"Error extracting text: {e}"
|
| 71 |
-
|
| 72 |
-
def create_multimodal_message(text, image=None):
|
| 73 |
-
"""Create a multimodal message with text and optional image"""
|
| 74 |
-
if image is None:
|
| 75 |
-
return {"role": "user", "content": text}
|
| 76 |
-
|
| 77 |
-
content = [
|
| 78 |
-
{
|
| 79 |
-
"type": "text",
|
| 80 |
-
"text": text
|
| 81 |
-
},
|
| 82 |
-
{
|
| 83 |
-
"type": "image_url",
|
| 84 |
-
"image_url": {
|
| 85 |
-
"url": process_image_for_model(image)
|
| 86 |
-
}
|
| 87 |
-
}
|
| 88 |
-
]
|
| 89 |
-
|
| 90 |
-
return {"role": "user", "content": content}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
services.py
ADDED
|
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# /services.py
|
| 2 |
+
|
| 3 |
+
"""
|
| 4 |
+
Manages interactions with external services like LLM providers and web search APIs.
|
| 5 |
+
|
| 6 |
+
This module uses a class-based approach to encapsulate API clients and their
|
| 7 |
+
logic, making it easy to manage connections and mock services for testing.
|
| 8 |
+
"""
|
| 9 |
+
import os
|
| 10 |
+
import logging
|
| 11 |
+
from typing import Dict, Any, Generator, List
|
| 12 |
+
|
| 13 |
+
from dotenv import load_dotenv
|
| 14 |
+
from huggingface_hub import InferenceClient
|
| 15 |
+
from tavily import TavilyClient
|
| 16 |
+
|
| 17 |
+
# --- Setup Logging ---
|
| 18 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 19 |
+
|
| 20 |
+
# --- Load Environment Variables ---
|
| 21 |
+
load_dotenv()
|
| 22 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 23 |
+
TAVILY_API_KEY = os.getenv("TAVILY_API_KEY")
|
| 24 |
+
|
| 25 |
+
if not HF_TOKEN:
|
| 26 |
+
raise ValueError("HF_TOKEN environment variable is not set. Please get a token from https://huggingface.co/settings/tokens")
|
| 27 |
+
|
| 28 |
+
# --- Type Definitions ---
|
| 29 |
+
Messages = List[Dict[str, Any]]
|
| 30 |
+
|
| 31 |
+
class LLMService:
|
| 32 |
+
"""A wrapper for the Hugging Face Inference API."""
|
| 33 |
+
def __init__(self, api_key: str = HF_TOKEN):
|
| 34 |
+
if not api_key:
|
| 35 |
+
raise ValueError("Hugging Face API key is required.")
|
| 36 |
+
self.api_key = api_key
|
| 37 |
+
|
| 38 |
+
def get_client(self, model_id: str, provider: str = "auto") -> InferenceClient:
|
| 39 |
+
"""Initializes and returns an InferenceClient."""
|
| 40 |
+
return InferenceClient(provider=provider, api_key=self.api_key, bill_to="huggingface")
|
| 41 |
+
|
| 42 |
+
def generate_code_stream(
|
| 43 |
+
self, model_id: str, messages: Messages, provider: str = "auto", max_tokens: int = 10000
|
| 44 |
+
) -> Generator[str, None, None]:
|
| 45 |
+
"""
|
| 46 |
+
Streams code generation from the specified model.
|
| 47 |
+
Yields content chunks as they are received.
|
| 48 |
+
"""
|
| 49 |
+
client = self.get_client(model_id, provider)
|
| 50 |
+
try:
|
| 51 |
+
stream = client.chat.completions.create(
|
| 52 |
+
model=model_id,
|
| 53 |
+
messages=messages,
|
| 54 |
+
stream=True,
|
| 55 |
+
max_tokens=max_tokens,
|
| 56 |
+
)
|
| 57 |
+
for chunk in stream:
|
| 58 |
+
if chunk.choices and chunk.choices[0].delta.content:
|
| 59 |
+
yield chunk.choices[0].delta.content
|
| 60 |
+
except Exception as e:
|
| 61 |
+
logging.error(f"LLM API Error for model {model_id}: {e}")
|
| 62 |
+
yield f"Error: Could not get a response from the model. Details: {str(e)}"
|
| 63 |
+
# Re-raise or handle as appropriate for your application flow
|
| 64 |
+
# For this app, we yield an error message to the user.
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
class SearchService:
|
| 68 |
+
"""A wrapper for the Tavily Search API."""
|
| 69 |
+
def __init__(self, api_key: str = TAVILY_API_KEY):
|
| 70 |
+
if not api_key:
|
| 71 |
+
logging.warning("TAVILY_API_KEY not set. Web search will be disabled.")
|
| 72 |
+
self.client = None
|
| 73 |
+
else:
|
| 74 |
+
try:
|
| 75 |
+
self.client = TavilyClient(api_key=api_key)
|
| 76 |
+
except Exception as e:
|
| 77 |
+
logging.error(f"Failed to initialize Tavily client: {e}")
|
| 78 |
+
self.client = None
|
| 79 |
+
|
| 80 |
+
def is_available(self) -> bool:
|
| 81 |
+
"""Checks if the search service is configured and available."""
|
| 82 |
+
return self.client is not None
|
| 83 |
+
|
| 84 |
+
def search(self, query: str, max_results: int = 5) -> str:
|
| 85 |
+
"""
|
| 86 |
+
Performs a web search and returns a formatted string of results.
|
| 87 |
+
"""
|
| 88 |
+
if not self.is_available():
|
| 89 |
+
return "Web search is not available."
|
| 90 |
+
|
| 91 |
+
try:
|
| 92 |
+
response = self.client.search(
|
| 93 |
+
query,
|
| 94 |
+
search_depth="advanced",
|
| 95 |
+
max_results=min(max(1, max_results), 10)
|
| 96 |
+
)
|
| 97 |
+
results = [
|
| 98 |
+
f"Title: {res.get('title', 'N/A')}\nURL: {res.get('url', 'N/A')}\nContent: {res.get('content', 'N/A')}"
|
| 99 |
+
for res in response.get('results', [])
|
| 100 |
+
]
|
| 101 |
+
return "Web Search Results:\n\n" + "\n---\n".join(results) if results else "No search results found."
|
| 102 |
+
except Exception as e:
|
| 103 |
+
logging.error(f"Tavily search error: {e}")
|
| 104 |
+
return f"Search error: {str(e)}"
|
| 105 |
+
|
| 106 |
+
# --- Singleton Instances ---
|
| 107 |
+
# These instances can be imported and used throughout the application.
|
| 108 |
+
llm_service = LLMService()
|
| 109 |
+
search_service = SearchService()
|